PHASE II SUPPLEMENTAL REMEDIAL INVESTIGATION WORK PLAN

STANDARD CHLORINE CHEMICAL COMPANY SITE KEARNY, NEW JERSEY

Prepared for:

The Peninsula Restoration Group (Standard Chlorine Chemical Co., Inc., Tierra Solutions, Inc. and Beazer East, Inc.) On behalf of Standard Chlorine Chemical Co., Inc.

Prepared by:

Key Environmental, Inc.200 Third Avenue
Carnegie, Pennsylvania 15106

December 2008

CERTIFICATION Pursuant to N.J.A.C. 7:26C-1.2

Regarding the *Phase II Supplemental Remedial Investigation Work Plan* dated December 2008 (collectively, including all enclosures, the "Submission") prepared by Key Environmental Inc. (Key) for the Peninsula Restoration Group on behalf of Standard Chlorine Chemical Co., Inc. (SCCC) and submitted herewith by SCCC, pursuant to the October, 1989 Administrative Consent Order for the SCCC Site located in Kearny, New Jersey, the undersigned officer of Key, does state as follows:

"I certify, under penalty of law that I have personally examined and am familiar with the Submission and that the information provided in the Submission is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that, if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

KEY ENVIRONMENTAL, INC.

James Zubrow, P.G.		President -		
	Typed/Printed Name		Title	
	Signature Signature		December 3, 2008	
·	Signature		Date	
_				
	Sworn to and subscribed before me on this	3rd	day of December 2008.	
	Signature of Notary Public			
	(Stamp and Seal/Commission Expiration Date)			
	COMMONWEALTH OF PENNSYLVANIA			

Notarial Seal
Kelly V. Kobistek, Notary Public
Camegle Boro, Allegheny County
My Commission Expires Apr. 15, 2010
Member, Pennsylvania Association of Notaries

CERTIFICATION Pursuant to N.J.A.C. 7:26C-1.2

Based on the Certification attached hereto as Exhibit "A" of Jim Zubrow of Key Environmental, Inc. regarding the *Phase II Supplemental Remedial Investigation Work Plan* dated December 2008 (collectively, including all enclosures, the "Submission") prepared by Key Environmental Inc. (Key) for the Peninsula Restoration Group on behalf of Standard Chlorine Chemical Co., Inc. (SCCC) for the Standard Chlorine Chemical Company Site (SCCC Site) located in Kearny, NJ, the undersigned officer of Standard Chlorine Chemical Co., Inc. does state as follows with respect to information regarding the SCCC Site:

"I certify under penalty of law that I have personally examined and am familiar with the information submitted herein including all attached documents, and that based on my inquiry of those individuals responsible for obtaining the information, to the best of my knowledge, I believe the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that, if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

STANDARD CHLORINE CHEMICAL CO., INC.

By: Margaret W. Kelly

Vice President

Sworn to and subscribed before me this <u>O2</u> day of December, 2008.

Signature of Notary Public

C No 01TH6077607 Notary Public, State of New York Qualified in Kings County My Commission Expires Sept. 20, 2010

(Stamp and Seal/Commission Expiration Date)

TABLE OF CONTENTS

LIST	OF FIGURES	iii
LIST	OF TABLES	iii
LIST (OF APPENDICES	iii
LIST (OF ABBREVIATIONS/ACRONYMS	iv
1.0 IN	TRODUCTION	1-1
2.0 PI	HASE II SUPPLEMENTAL RI SCHEDULE	2-1
3.0 PI	RINCIPAL REMEDIAL INVESTIGATION PERSONNEL	3-1
4.0 SI	TE HISTORY	4-1
4.1	HISTORICAL SITE PLANS	4-1
4.2	HISTORICAL AERIAL PHOTOGRAPHS	4-1
5.0 SI	TE DESCRIPTION	5-1
5.1	SITE PHYSICAL CONDITIONS	5-1
5.2	SURFACE WATER BODIES	5-5
5.3	USGS QUADRANGLE	5-7
5.4	WETLANDS DELINEATION	5-8
5.5	BORING LOGS AND WELL CONSTRUCTION DIAGRAMS	
5.6	SURROUNDING LAND USE AND POTENTIAL RECEPTORS	5-9
6.0 D	ESCRIPTION OF AREAS OF CONCERN	6-1
6.1	AREA OF CONCERN 1 – LAGOON SOLIDS	6-1
6.2	AREA OF CONCERN 2 – WESTERN AREA SOIL	6-3
6.3	AREA OF CONCERN 3 – EASTERN AREA SOIL	6-5
6.4	AREA OF CONCERN 4 – SHALLOW FILL UNIT GROUNDWATER	6-7
6.5	AREA OF CONCERN 5 – DEEPER SAND UNIT GROUNDWATER	6-8
6.6	AREA OF CONCERN 6 – BEDROCK GROUNDWATER	6-10
6.7	AREA OF CONCERN 7 – DNAPL	6-11
6.8	AREA OF CONCERN 8 – DRAINAGE DITCH SURFACE WATER	6-12
6.9	AREA OF CONCERN 9 – HACKENSACK RIVER SURFACE WATER	6-13
6.10	AREA OF CONCERN 10 – DRAINAGE DITCH SEDIMENT	6-14

TABLE OF CONTENTS (CONTINUED)

6.11 AREA OF CONCERN 11 – HACKENSACK RIVER SEDIMENT	6-16
6.12 AREA OF CONCERN 12 – TRANSFORMER AREA	6-17
7.0 AREA OF CONCERN SAMPLING SUMMARY	7-1
8.0 PROPOSED SAMPLING LOCATIONS	8-1
8.1 DNAPL DELINEATION (AREAS OF CONCERN 2, 3, AND 7)	8-2
8.2 GROUNDWATER DELINEATION (AREAS OF CONCERN 4 AND 5)	8-4
8.3 SOIL DELINEATION (AREA'S OF CONCERN 2 AND 3)	8-7
9.0 OTHER SAMPLING PROPOSALS (AREA OF CONCERN 11)	9-1
10.0 QUALITY ASSURANCE PROJECT PLAN	10-1
11.0 HEALTH AND SAFETY PLAN	11-1
DEFEDENCES	R_1

LIST OF FIGURES, TABLES, AND APPENDICES

<u>Figure</u>	<u>Description</u>
1-1	Site Location Map
1-2	General Site Arrangement
2-1	SCCC Site Phase II Supplemental Remedial Investigation Schedule
4-1	Historical Site Operations
5-1	Geologic Cross-Sections and Locations
5-2	Potentiometric Surface Map Fill Unit
5-3	Potentiometric Surface Map Deeper Sand Unit
5-4	Site Topography
5-5	Site Location Map and One Mile Radius
6-1	Historical Sample Locations
6-2	Areas of Concern
8-1	Investigation Locations
8-2	Groundwater Sampling Locations
Table	Description
1-1	Historical RI and IRM Activities
7-1	Sample Summary
7-2	Sampling and Analysis Requirements
Appendix	<u>Description</u>
A	Historical Aerial Photographs
В	General Soils Map
C	Wetlands Maps and Classification Table
D	Boring Logs and Well Construction Diagrams
Е	Historical Analytical Results

LIST OF ABBREVIATIONS/ACRONYMS

ACO Administrative Consent Order

AOC Area of Concern Beazer East, Inc.

CFR Code of Federal Regulations CLH Chemical Land Holdings, Inc.

cm/sec centimeters per second COI Constituents of Interest

COPR Chromite Ore Processing Residue

Cr Chromium (Total)
Cr(VI) Hexavalent Chromium
Cr(III) Trivalent Chromium

Diamond Site Former Diamond Shamrock Site
Dioxin 2,3,7,8- Tetrachlorodibenzo-p-dioxin
DNAPL Dense Non-Aqueous Phase Liquid

EP Extraction Procedure

EPA U.S. Environmental Protection Agency

ER-M Effects Range-Median ESI Enviro-Sciences, Inc.

ft/ft Feet per Foot

FSP Field Sampling Plan

Group Peninsula Restoration Group GWQS Groundwater Quality Standards

HASP Health and Safety Plan IRA Interim Response Action

IRAW Interim Response Action Workplan

IRM Interim Remedial Measure
LIF Laser-Induced Fluorescence
Maxus Maxus Energy Corporation
mg/kg Milligram per Kilogram
mg/L Milligrams per Liter
msl Mean Sea Level

NGVD National Geodetic Vertical Datum N.J.A.C. New Jersey Administrative Code

NJDEP New Jersey Department of Environmental Protection

NRDCSCC New Jersey Non-Residential Direct Contact Soil Cleanup Criteria

PAH Polynuclear Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl
PCDD Polychlorinated Dibenzodioxin
PCDF Polychlorinated Dibenzofuran
QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

SCCC Standard Chlorine Chemical Co., Inc.

Seaboard Former Koppers Seaboard Site

LIST OF ABBREVIATIONS/ACRONYMS (CONTINUED)

SRI Supplemental Remedial Investigation

SRIWP Phase II Supplemental Remedial Investigation Work Plan

SVOCs Semi-Volatile Organic Compounds SWQC Surface Water Quality Criteria

TAL Target Analyte List

TCDD Tetrachlorodibenzo-p-dioxin
TCL Target Compound List

Tierra Solutions, Inc.
TOC Total Organic Carbon

VOCs Volatile Organic Compounds

Weston Roy F. Weston, Inc.

- v -

1.0 INTRODUCTION

This Phase II Supplemental Remedial Investigation Work Plan (SRIWP) for the Standard Chlorine Chemical Company Site (located at 1025-1035 Belleville Turnpike in Kearny, New Jersey) has been prepared for the Peninsula Restoration Group ("Group")¹ on behalf of Standard Chlorine Chemical Co., Inc. (SCCC). This SRIWP presents the scope of work necessary to complete the Remedial Investigation (RI) for the SCCC Site located in Kearny, New Jersey. Investigation of six Areas of Concern is proposed in this SRIWP. Existing data collected as a result of historical investigations, coupled with data to be collected during implementation of an Interim Response Action, are considered adequate for characterization of six additional Areas of Concern (the various Areas of Concern are described in detail in Section 6.0).

The Phase II Supplemental RI (Phase II SRI) includes collection of data for onsite as well as offsite areas. Offsite data collection areas include locations on the adjacent Former Diamond Site (to the north/northwest) and the adjacent former Koppers Seaboard (Seaboard) Site (to the southeast). The RI activities presented in this SRIWP, coupled with information generated as a result of historical investigations, address the RI requirements of New Jersey Administrative Code (N.J.A.C.) 7:26E (i.e., the Technical Requirements for Site Remediation) as well as the October 1989 Administration Consent Order entered into between the NJDEP and SCCC (the SCCC ACO).

The location of the Site is shown on Figure 1-1 which consists of combined portions of two United States Geologic Survey 7.5 minute quadrangles (Jersey City and Weehawken, New Jersey). The general Site arrangement under current conditions is shown on Figure 1-2. The SCCC Site occupies an area of approximately 25 upland acres. The Site is bounded by the Hackensack River to the northeast, Belleville Turnpike to the southwest, the Diamond Site to the north and northwest, and the Seaboard Site to the southeast. Railroad tracks were formerly present at the southwestern corner of the Site. A north-south trending railroad right-of-way, the

The Group is comprised of SCCC, Tierra Solutions, Inc., and Beazer East, Inc. (Beazer), a former owner of a portion of the SCCC Site.

site of a former rail spur which is currently owned by the Hudson County Improvement Authority traverses the site from the northwest to southeast.

Various historical Remedial Investigation activities and Interim Remedial Measures (IRMs) have been implemented at the SCCC Site pursuant to an Administrative Consent Order (ACO). The ACO activities conducted to date are summarized in Table 1-1. These activities have resulted in the collection of the majority of the information necessary for completion of the SCCC Site RI.

As indicated, a series of Interim Remedial Measures (IRMs) were completed by SCCC in the early 1990s. The IRMs were completed in accordance with an NJDEP-approved Workplan and consisted of the following tasks:

- Installation of security fencing surrounding the former production area and lagoons to prevent unauthorized access;
- Addition of soil to the lagoon berm to increase its height and the available freeboard to prevent potential overflows;
- Placement of geotextile and rip rap along the Hackensack River shoreline in the vicinity of the lagoon;
- Removal, packaging, and secure placement of the contents of five aboveground storage tanks; and,
- Packaging and secure placement of asbestos-containing materials associated with the IRMs.

To mitigate potential risk of human exposure to hexavalent chromium at the property, IRMs were implemented by Maxus Energy Corporation (Maxus) on behalf of Occidental Chemical Corporation in February 1991 in the western and central sections of the SCCC Site². The chromium IRMs implemented at the site were as follows:

Some of the work at the SCCC Site has been conducted under an Administrative Consent Order dated April 17, 1990 entered by NJDEP with Occidental Chemical Corporation (OCC) and Chemical Land Holdings, (CLH) Inc. (now Tierra) relating to COPR (the "Diamond ACO"). Maxus historically had responsibility for overseeing work under the Diamond ACO for OCC, as successor to Diamond Shamrock Chemicals Company.

- Installation of an asphalt pavement overlay (new wearing course) on exiting asphalt-paved traffic areas;
- Asphalt paving with geotextile fabric over existing soils, overlain by 4 inches of dense graded aggregate, overlain by 4 inches of asphalt of all remaining traffic areas;
- Construction of an interim surface cover in non-traffic areas west of the railroad right-of-way with geotextile/geomembrane liner overlain with 4 inches of dense graded aggregate; and,
- Installation of a dust fence barrier along the railroad right-of-way and north fence line to isolate the impacted surface soil in the former process area.

In addition to the historical investigative and remedial activities listed in Table 1-1, substantial investigative activities at the Site are also planned pursuant to an Interim Response Action Work Plan (IRAW) prepared jointly for the SCCC and Diamond Sites. The IRAW was submitted to the New Jersey Department of Environmental Protection (NJDEP) in May 2007 and an IRAW addendum was submitted in response to NJDEP comments in November 2007.

The remainder of this SRIWP is structured based on the outline for an RI Work Plan as presented in N.J.A.C. 7:26E-4.2. The following specific sections are provided:

- Section 2 Phase II Supplemental RI Schedule
- Section 3 Principal Remedial Investigation Personnel
- Section 4 Site History
- Section 5 Site Description
- Section 6 Description of Areas of Concern
- Section 7 Area of Concern Sampling Summary
- Section 8 Proposed Sampling Locations
- Section 9 Other Sampling Proposals
- Section 10 Quality Assurance Project Plan
- Section 11 Health and Safety Plan

2.0 PHASE II SUPPLEMENTAL RI SCHEDULE

A detailed schedule for the completion of the SCCC Phase II SRI is provided as Figure 2-1 in the form of a Gantt chart. The schedule depicts all major Phase II SRI activities, including timelines and dates for all field activities, receipt of analytical results, and submittal of reports to the NJDEP. The schedule as presented is based on an assumed SRIWP approval date of June 1, 2008.

3.0 PRINCIPAL REMEDIAL INVESTIGATION PERSONNEL

The Group will oversee the RI project with technical coordination by Langan Engineering (on behalf of SCCC). KEY will be responsible for ensuring that project-specific sampling activities related to the RI data acquisition activities are implemented in conformance with the requirements of the SRIWP, Field Sampling Plan (FSP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP). Those tasks not performed by KEY will be completed by subcontractors subject to oversight by KEY. KEY will also have primary responsibility for Quality Assurance/Quality Control (QA/QC) for field activities, analysis, and report preparation. KEY will issue deliverables to the Group for submittal to the NJDEP, as appropriate. The management, technical, and QA/QC responsibilities of the project personnel for implementation of the RI activities are summarized as follows:

Group Project Management [Ms. Margaret Kelly (SCCC), Mr. Enrique Castro (Tierra), and Mr. Mitchell Brourman (Beazer)]; Technical Coordinator [Mr. Gerry Coscia (Langan, on behalf of SCCC)]

- Coordinate project technical activities
- Conduct project planning activities
- Attend meetings between the Group and NJDEP, as necessary
- Review all project deliverables
- Oversee the project budget, schedule, and staffing

KEY Project Manager (Mr. James Zubrow: 412-279-3363)

- Coordinate project technical activities
- Assist SCCC in project planning
- Attend meetings between the Group and NJDEP, as necessary
- Provide technical guidance to field personnel
- Establish project files
- Review all project deliverables
- Manage the project budget, schedule, and staffing

KEY Field Investigation Task Leader (Mr. James Snook)

- Ensure that appropriate field documentation is incorporated into the project files
- Supervise field investigation activities and ensure that the SRIWP, FSP, QAPP, and HASP are followed
- Provide Health and Safety field support
- Participate in project meetings with the Group and NJDEP, as necessary
- Prepare project technical reports

KEY QA/QC Officer (Mr. Robert Hubbard):

- Initiate corrective action, as necessary, for quality assurance (QA) compliance
- Review laboratory data corrective action, as necessary, for QA compliance
- Coordinate analytical data validation, as required, and review
- Review laboratory QA/QC
- Review documentation

Primary responsibility for implementation of the RI rests with KEY's Project Manager. Primary responsibility for data quality rests with KEY's QA/QC Officer. Quality assurance will be provided by the analytical laboratory's Project Manager and QA/QC Officer prior to release of data and/or reports to KEY.

4.0 SITE HISTORY

A detailed description of the SCCC Site operational history is provided in the RI Report prepared by Roy F. Weston, Inc. (Weston, May 1993). In summary, manufacturing operations were conducted at the Site by various entities between 1916 and 1993, and included the refining of naphthalene, the manufacture of products from naphthalene, naphthalene derivatives, and dichlorobenzenes, the formulation of drain cleaning products, and, on a limited basis during the mid-1970s, the processing of trichlorobenzene. The naphthalene refining operations were conducted in the eastern two-thirds of the Site. The manufacture of dichlorobenzene products and the formulation of drain cleaning products occurred in the western one-third of the property. Dichlorobenzene and trichlorobenzene processing was conducted in the northeastern section of the Site.

4.1 HISTORICAL SITE PLANS

Figure 4-1 provides a graphical representation of historical site operations. Former processing areas, wastewater treatments, raw material storage, packaging and warehousing, and administrative areas are shown on Figure 4-1.

4.2 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs were obtained for the SCCC Site and are provided in Appendix A. The aerial photographs consist of matte finish color and black/white plates. In accordance with the requirements of N.J.A.C. 7:26E-4.2(b)(3)(ii), the Site boundaries, a bar scale, and a north arrow have been overlain on the aerial photographs. Details regarding the various aerial photographs are as follows:

Year	Туре	Source	
1986	Color	Topo-Metrics, Inc.	
2006	Color	United States Geological Survey	
1953	Black&White	lack&White Electronic Data Resources, Inc.	
1966	Black&White	Electronic Data Resources, Inc.	
1976	Black&White	Electronic Data Resources, Inc.	
1985	Black&White	Electronic Data Resources, Inc.	
1995	Black&White	White Electronic Data Resources, Inc.	

The quality of the aerial photographs varies considerably. Nonetheless, interpretation of the photographs is achievable, particularly for the color plates. In accordance with N.J.A.C. 7:26E-3.1(c)1vi, interpretation of the historical aerial photos has been completed. The following specific items of interest are discernable from the historical black and white photographs:

- A portion of the east lagoon is apparent in the earliest available black and white photograph (1953) and some soil disturbance is evident in the remainder of the lagoon area;
- A white area believed to be a pile of either raw material or off-specification material is evident to the west of the lagoon in the earliest available aerial photograph (1953);
- Inspection of the 1953 photograph indicates that buildings existed in all the locations where they exist under current site conditions;
- Railcars are evident in the north-central portion of the 1953 photograph and a rail siding that curves to the northeast to the adjacent property (i.e., the adjacent Former Diamond Site is evident);
- The drainage feature along the southern property line is vaguely discernible in the 1953 photograph but is not as fully developed as it appears to be in subsequent photographs;
- The drainage feature that currently exists in the center of the site is also vaguely
 discernible in the 1953 photograph but is not as extensive as in subsequent
 photographs;
- The drainage feature that exists in the northwestern corner of the property is evident in the 1953 photograph and appears to convey runoff on to the site from offsite locations;

- As of 1966, standing water is evident in both the east and west lagoons, the Site surface appears to be more disturbed, and then central drainage ditch is more fully developed;
- The 1976 image is relatively unclear but Site conditions do not appear to have changed appreciably with the exception of the east and west lagoons which appear to be full of water in the image;
- Conditions do not appear to have changed appreciably from 1976 through 1995 as is evident from inspection of the 1976, 1985, and the 1995 photographs.

The two color plates provided in Appendix A are reasonably good images. One of these plates is a 1986 aerial photograph that shows the condition of the Site prior to the implementation of any IRMs. The 2006 photograph essentially shows the condition of the Site as it exists today. The 2006 photograph reflects the improvements in Site environmental conditions achieved via the completion of the various IRMs. The following items of interest are discernible on the 1986 color plate:

- Areas of exposed soils are evident across much of the site, particularly in the westernmost portion;
- An elongated area of stained soil is evident in the vicinity of the former railroad siding although it is evident that the siding has been removed;
- The east and west lagoons are essentially full of solids and standing water, however, no evidence of any overland releases of the lagoon contents is evident;
- A large number of tanks in the northeastern production area and in the vicinity of the drain cleaning product formulation area (western portion of the Site);

By contrast, the 2006 color aerial photograph displays a number of significant changes in site conditions, as follows:

- IRMs consisting of soil, gravel, or asphalt surface covers have been emplaced in the northwestern, southwestern, and central portions of the site;
- The tanks in the northeast processing area and the western formulation area have been removed from the site;
- Cargo containers used for interim storage of asbestos-containing materials and other interim measure-related materials are evident just to the west of the central drainage ditch;
- Volunteer vegetation is evident at a number of locations on the Site and a slight riparian buffer zone is developing along the Hackensack River.

5.0 SITE DESCRIPTION

This section provides a description of the site and consists of a discussion of the site physical conditions, surface water, topography (quadrangle), wetlands, boring log information, and surrounding land use.

5.1 SITE PHYSICAL CONDITIONS

The physical and environmental conditions at the SCCC Site have been characterized through the completion of a series of investigations previously identified in Table 1-1. The following subsections describe the localized physical conditions including soils, geology, hydrogeology, and topography. The environmental conditions at the SCCC Site are summarized on an Area of Concern (or Media of Concern) basis in Section 6.0.

5.1.1 Soils

The SCCC Site was originally marshlands. The marshlands were filled with between 2 to 8 feet of fill material to accommodate development. Fill material constitutes the uppermost "soil" horizon at the SCCC Site.

The soils at the Site are identified as NJ036 on the U.S. Department of Agriculture General Soil Map for Essex and Hudson Counties (Appendix B). The soils (NJ036) are of the Sulfaquents-Udorthents-Psamments Association and are described as follows on the General Soil Map:

"Nearly level, very poorly drained, very deep mineral and organic soils on tide-flooded flats, and similar areas overlain by fill materials."

5.1.2 Geology

Information regarding the regional and site-specific geology has been compiled as a result of the investigations at the SCCC Site, as well as through investigation of the adjacent Diamond and

Seaboard Sites. The regional geology consists of coastal plain sediments overlying Triassic-age bedrock. Figure 5-1 is a cross-section showing the shallow subsurface geologic conditions beneath the SCCC Site.

Prior to development, the area consisted of marshlands that bordered the Hackensack River. Fill materials (the "shallow fill unit") were placed in the coastal marshlands of the region to create property for industrial/commercial development. At the SCCC Site, these fill materials generally consisted of Chromite Ore Processing Residue (COPR) soil and silty sand to depths ranging between 2 to 8 feet below the present grade.

The original marsh surface, now located beneath the fill materials, consists of silt, humus, and peat. This layer is regionally referred to as the "meadow mat" and is typically two to four feet thick across the peninsula. The upper surface of the meadow mat is undulating rather than planar. A sand unit (the "deeper sand unit") is present beneath the meadow mat and is generally less than ten feet thick at the SCCC Site. This deeper sand layer is continuous across the Site.

A varved clay unit is present beneath the deeper sand unit. The varved clay unit is continuous beneath the Kearny peninsula. The thickness of this unit beneath the SCCC Site is estimated at greater than 40 feet based on subsurface data acquired from the western section of the Seaboard Site. The vertical permeability of the varved clay unit, based on laboratory testing of Shelby tube samples collected at the Seaboard Site, averaged approximately 2.5×10^{-8} centimeters per second (cm/sec).

A glacial till unit is present beneath the varved clay. Bedrock lies directly beneath the glacial till unit at depths ranging from 70 feet in the western section of the Seaboard Site to greater than 100 feet in the eastern section of the Seaboard Site. The depth to bedrock has not been ascertained beneath the SCCC Site but is believed to be comparable to that observed in the western section of the adjacent Seaboard Site.

5.1.3 <u>Hydrogeology</u>

Two separate shallow groundwater-bearing units have been the focus of the groundwater investigation activities performed at the Site: 1) a shallow fill unit; and 2) a deeper sand unit that underlies the meadow mat and overlies the varved clay. The water table occurs in the shallow fill material overlying the meadow mat.

The meadow mat is a reducing environment that prevents the vertical migration of hexavalent chromium (Cr[VI]) into the underlying sand (i.e., Cr[VI] is reduced to trivalent chromium - Cr[III]). The meadow mat also acts as a basal semi-confining unit that limits, but does not completely eliminate, the hydraulic connection between the shallow fill materials and the underlying deeper sand unit. Potentiometric data acquired from nested well locations during low tide indicate the existence of a downward vertical gradient between the shallow fill material and the deeper sand layer. Groundwater within the shallow fill material exists under unconfined conditions. Previous studies have indicated that the groundwater within the shallow fill material is not tidally influenced to a significant degree.

Groundwater flow in the shallow fill unit at the SCCC Site appears to be influenced by recharge and discharge phenomena. A potentiometric mound, resulting from recharge from precipitation, exists in the shallow fill material in the vicinity of the lagoons at the SCCC Site. Groundwater flows radially away from this potentiometric mound in the lagoon area.

Groundwater flow in the southern portion of the Diamond Site and the northern portion of the SCCC Site is toward a 48-inch diameter storm sewer located along the boundary between the two Sites. It is possible that, based on evaluation of the potentiometric data, the storm sewer (and/or the backfill surrounding it) may serve as a localized discharge point for groundwater in the fill unit. An evaluation of the storm sewer was proposed by Tierra Solutions, Inc. (Tierra) in its February 2006 response to comments on the Diamond Site RI. This evaluation has been completed. Based upon this evaluation, Tierra submitted an Interim Remedial Measures Workplan in October 2006. Repairs for the storm sewer and pressure grouting of the

surrounding backfill material are recommended in the October 2006 IRM Workplan. To date, NJDEP has not acted on this IRM Workplan.

Beyond the influence of the mound in the lagoon area and the potentiometric low in the vicinity of the sewer, groundwater flow in the shallow fill material at the SCCC Site is primarily to the south-southeast toward a drainage ditch in the southern portion of the SCCC Site. Groundwater in the shallow fill unit in the eastern portion of the SCCC Site flows to the east and discharges to the Hackensack River. The average horizontal hydraulic gradient in the shallow fill material at the SCCC Site is 0.0063 feet per foot (ft/ft). Figure 5-2 is a potentiometric surface contour map for the shallow fill unit on the SCCC Site.

Groundwater in the deeper sand unit beneath the meadow mat exists under semi-confined conditions. The underlying varved clay acts as an effective barrier to the downward migration of groundwater from this unit. Groundwater flow in the deeper sand unit is primarily to the south-southeast, sub-parallel to the direction of flow in the river. Horizontal hydraulic gradients in the deeper sand unit are relatively flat, ranging from 0.002 to 0.008 ft/ft. Figure 5-3 is a potentiometric surface contour map for the deeper sand unit on the SCCC Site. Based on previously conducted slug tests, the average horizontal hydraulic conductivity of this unit at the SCCC Site is 5.34 feet/day (1.9x10⁻³ cm/sec).

Groundwater within the deeper sand unit is tidally influenced to a limited extent. Fluctuations in potentiometric surface elevations that are correlated to tides in the Hackensack River have been observed in wells located immediately adjacent to the river. The limited tidal influence has not been observed to create significant changes in groundwater flow directions.

5.1.4 Topography

An aerial survey of the SCCC Site and surroundings was completed by Air Survey of Dulles, Virginia in 2004. A topographic base map was prepared as a result of the flyover and has been used for the preparation of specific Site plan view maps presented in this SRIWP. Topographic contours based on the aerial survey are depicted on one-foot contours on Figure 5-4. The

horizontal reference is New Jersey State Plane Coordinates based on North American Datum (NAD 1927) and the vertical reference is National Geodetic Vertical Datum (NGVD 1929).

As shown on Figure 5-4, the surface of the Site is relatively flat and ranges in elevation from approximately 3 feet to 10 feet above mean sea level (msl). Areas of greater topographic relief exist along the Hackensack River shoreline and in the vicinity of the lagoons in the eastern portion of the site (berms). Drainage is primarily to the Hackensack River via a drainage ditch that exists along the southern side of the Site.

5.2 SURFACE WATER BODIES

The SCCC Site is located on the Kearny Peninsula between the Passaic and Hackensack Rivers. The Passaic River is located approximately 1 mile to the west of the Site and no hydraulic connection exists between the Site and the Passaic River. By contrast, the Hackensack River is located immediately east of the Site.

The Hackensack River is approximately 45 miles long and rises in Rockland County, New York approximately 1.6 miles south of West Haverstraw. The river follows a generally meandering southerly route and is impounded at two major locations to form reservoirs (Lake Tappan and the Oradell Reservoir).

The Hackensack River, Lake Tappan, and all tributaries are classified as FW2-NT(C1) waters from the New York/New Jersey State line to the Oradell Dam (N.J.A.C. 7:9-6B). The main stem of the river and saline tributaries from the Oradell Dam to Overpeck Creek are classified as SE1. The main stem and saline tributaries from Overpeck Creek to the Route 1 and 9 crossing are classified as SE2. Finally, the main stem downstream of the Route 1 and 9 crossing is classified as SE3.

The Hackensack River adjacent to the SCCC Site is classified SE2. The Route 1 and 9 crossing is located approximately 2.5 river miles downstream of the Site. The classifications applicable to

the reaches of the river adjacent to and downstream of the Site are defined as follows (N.J.A.C. 7:9-6B):

SE2 – The SE2 classification applies to saline estuarine waters whose designated uses are as follows:

- 1. Maintenance, migration and propagation of the natural and established biota;
- 2. Migration of diadromous fish;
- 3. Maintenance of wildlife;
- 4. Secondary contact recreation; and
- 5. Any other reasonable uses.

SE3 – The SE-3 classification applies to saline estuarine waters whose designated uses are as follows:

- 1. Secondary contact recreation;
- 2. Maintenance and migration of fish populations;
- 3. Migration of diadromous fish;
- 4. Maintenance of wildlife; and
- 5. Any other reasonable uses.

The flow of freshwater in the Hackensack River has been reduced by diversion for municipal water supplies. The Hackensack Water Company was created in the late 1860s to supply the cities of Hoboken, Weehawken, and Hackensack. Starting in 1901, the water company began constructing dams and reservoirs throughout the Hackensack River watershed, initially at Woodcliffe, and later at Oradell and Clarkstown. These reservoirs reduced the flow of freshwater in the Hackensack River, allowing saltwater to move upriver. In addition, dredging operations have resulted in upriver migration of salt water.

The Hackensack River is tidally influenced as far upstream as the Oradell Dam. A tidal range of approximately 5 to 6 feet occurs in the lower portion of the Hackensack River in the vicinity of

the SCCC Site. Tidal information for Tidal Station 853-0696 (Hackensack River at Belleville Turnpike) located just upstream of the site was obtained from the New Jersey Tidal Benchmark Network at http://www.njgeology.org/geodata/dgsdown/njtidalbm.pdf. Elevations relative to datum are available from http://tidesandcurrents.noaa.gov.

A summary of the tidal information relative to Mean Lower Low Water (MLLW), National Geodetic Vertical Datum (NGVD) of 1929, and North American Vertical Datum (NAVD) of 1988 is as follows:

Tidal	Elevation (feet) ⁽²⁾			
Information ⁽¹⁾	MLLW	NGVD 1929	NAVD 1988	
MHHW	5.85	8.55	7.43	
MHW	5.54	8.26	7.14	
MTL	2.89	5.63	4.51	
MLW	0.24	2.99	1.87	
MLLW	0.00	2.76	1.64	

1. Abbreviations for tidal information are as follows:

MHHW: Mean Higher High Water

MHW: Mean High Water

MTL:

Mean Tide Level

MLW: Mean Low Water

MLLW: Mean Lower Low Water

2. Elevation relative to indicated datum. Based on tidal epoch 1983-2001 with control at station 851-8750 (The Battery, New York). Elevations relative to NGVD and NAVD are based on averages for multiple benchmarks. As a result of this averaging, elevations computed indirectly from the tidal elevations may differ slightly from the datum-based elevations listed.

Surface runoff from the Site enters the Hackensack River via two primary routes: 1) a storm sewer located along the northern site perimeter; 2) via a drainage ditch along the southern Site perimeter. The drainage ditch conveys runoff via a culvert through a berm located along the river frontage. Both the storm sewer and the drainage ditch culvert are equipped with tide gates to preclude flooding of the Site under high water conditions.

5.3 **USGS QUADRANGLE**

Two portions of USGS quadrangles were merged to form the Site Location map presented as Figure 1-1. As required by N.J.A.C. 7:26E-4.2(b)4iii, Figure 5-5 displays the Site, property boundaries, and the area located within a 1 mile radius of the Site.

5.4 WETLANDS DELINEATION

In accordance with the requirements of N.J.A.C. 7:26E-4.2(b)4iv, wetland maps were obtained from the National Wetlands Inventory website using the United States Fish & Wildlife Surface Wetlands Online Mapper (http://wetlandsfws.er.usgs.gov). Wetland maps for the Site and surrounding area are provided at scales of 1:40,000, 1:15,000, and 1:5,000 in Appendix C. A table of wetlands and deepwater habitat classifications is also provided in Appendix C.

As shown on the 1:5,000 scale National Wetlands Inventory (NWI) map, the wetlands in the vicinity of the Site consist primarily of subtidal or intertidal estuarine habitats. The wetland areas located closest to the Site are the Hackensack River to the east-northeast and portions of the adjacent Seaboard property to the south-southeast.

As shown on the NWI map, the Hackensack River is classified as E1UBL (estuarine-subtidal-unconsolidated bottom-subtidal). The wetlands at the northern end of the adjacent Seaboard Site are classified as PUBV (palustrine-unconsolidated bottom-permanent tidal), PEM5R (palustrine-emergent-mesohaline-seasonal tidal), and E2EM5P (estuarine-subtidal-emergent-mesohaline-irregularly flooded). The east and west lagoons are classified as PUBHx (palustrine-unconsolidated bottom-permanently flooded-excavated).

Princeton Hydro, LLC also performed a Site-specific wetland survey for the SCCC Site in 2004. A wetlands map based on this Site-specific survey is also provided in Appendix C. A number of freshwater emergent wetlands were identified at the Site as a result of this survey. These emergent wetlands are located in low-lying areas (specifically the southwest corner and westernmost portion of the Site), in the locations of various drainage ditches and swales (specifically in the interior of the Site and along the southern boundary), and along the Hackensack River shoreline.

The East and West Lagoons are identified as a freshwater pond on the National Wetlands Inventory map, and as a non-regulated water feature (settling basins) on the Site-specific wetlands map.

As indicated in the Site-specific wetlands delineation report, the New Jersey Freshwater Wetlands Map for the Site (Jersey City NW and Weehawken SE Quadrants) indicates palustrine emergent persistent seasonal saturated (PEM1E) wetlands in the southern section of the Site which connects to the adjacent property (the Seaboard Site), palustrine open water intermittently flooded diked/impounded excavated (POWHx) waters in the vicinity of the man-made lagoon, and Upland comprising the majority of the Site.

5.5 BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

As required by N.J.A.C. 7:26E-4.2(b)4v, relevant boring logs have been compiled for the Site. Multiple phases of remedial investigation have been completed at the Site and boring logs from the various investigations have been compiled. Copies of boring logs and well construction diagram for the following investigative activities have been compiled:

- Lagoon Investigation Roy F. Weston, Inc. 1987
- Remedial Investigation Roy F. Weston, Inc. 1991/1992
- Focused Remedial Investigation ERM, Inc. 1997
- Supplemental Remedial Investigation Key Environmental, Inc. 1999

Copies of boring logs and well construction diagrams generated as a result of these investigatory efforts are provided in Appendix D. Additional logs, specifically those generated in 1999 via the use of a Laser-Induced Fluorescence (LIF) Rapid Optical Screening Tool (ROST), and a cone penetrometer investigation are also available and have been used, in part, to develop the scope of the planned remedial investigation outlined in this work plan.

5.6 SURROUNDING LAND USE AND POTENTIAL RECEPTORS

In accordance with the requirements of N.J.A.C. 7:26E-4.2(b)4vi, surrounding land use was reviewed with a primary emphasis on the located of sensitive environmental areas and human receptors. Land use within the 1,000-foot radius of the Site is primarily industrial in nature and no residential areas or sensitive human receptors are known to exist within this radius.

The following is a list of the closest known schools, medical facilities, day care centers, and recreational areas, including the type, name, address, approximate ordinal direction relative to the Site, and approximate distance from the Site:

Tuno	Name	A J J	Dinadian	Distance	
Type		Address	Direction	feet	miles
School	Elementary	143 Romaine Ave.	SE	9,350	1.77
	School 23	Jersey City, NJ			
School	Dr. Charles P	214 Plainfield Ave.	SE	8,450	1.60
	DeFuccio School	Jersey City, NJ			
Recreation	Laurel Hill	New County Road	NNE	2,750	0.52
Area	Park	Secaucus, NJ			
Recreation	Lincoln	State Route 440	SSE	5,700	1.08
Area	Park	Jersey City, NJ			
Daycare	St. Elizabeth	129 Garrison Ave.	SE	9,650	1.83
	Child Care Center	Jersey City, NJ			
Hospital	West Hudson	206 Bergen Ave.	WNW	13,350	2.53
	Hospital	Kearny, NJ			
Hospital	Jersey City	50 Baldwin Ave.	SW	12,720	2.41
	Medical Center	Jersey City, NJ			

As shown in the preceding table, no sensitive human receptors are located proximate to the Site. A Public Health Assessment was completed for the Site in 2005 (Public Health Assessment for Standard Chlorine Chemical Company, Inc., Agency for Toxic Substances and Disease Registry [ATSDR], April 5, 2005). Fisherman at Laurel Hill Park (located approximately 0.5 miles upstream of the Site) and at the confluence of Penhorn Creek and the Hackensack River (located approximately 0.5 miles downstream of the Site) were identified by the ATSDR as potential receptors although a complete exposure pathway has not been confirmed.

The ATSDR concluded that the Site poses an *indeterminate public health hazard* via fish/shellfish consumption and air pathways. The ATSDR also concluded that the site poses *no apparent public health hazard* as a result of potential exposure associated with trespassing and/or recreational use of the river.

The Site is located adjacent to the Hackensack River at the southern end of the Hackensack Meadowlands District (HMD). The HMD is an important ecological resource and is an Atlantic flyway stopover and nesting point for migratory birds.

No federally-listed threatened or endangered species have been observed onsite to date. According to the ATSDR Public Health Assessment, state-listed species such as northern harrier hawks (Circus cyaneus – state endangered list), black-crowned night herons (Nycticorax nycticorax – state threatened list), and yellow-crowned night herons (Nyctanassa violacea – state threatened list) roost at the Site. Additionally, according to the United States Fish and Wildlife Service, state- and federally-listed threatened or endangered species have historically been observed in the Hackensack River watershed, and include the following: bald eagle (Haliaeetus leucocephalus – state endangered list); shortnose sturgeon (Acipenser brevirostrum – federal endangered list), dwarf wedgemussel (Alasmidonta heterodon – federal endangered list), bog turtle (Clemmys muhlenbergii – federal threatened list), and Indiana bat (Myotis sodalist – federal endangered list).

6.0 DESCRIPTION OF AREAS OF CONCERN

As previously discussed, various investigations have been performed at the SCCC Site. Figure 6-1 displays sampling locations for the historical investigations. Analytical data acquired during these investigations as well as a Site map displaying the locations were previously provided as an attachment to the IRAW. Multiple Areas of Concern have been identified as a result of historical record review and Site investigation. The following Areas (Media) of Concern have been identified for the SCCC Site:

- Area of Concern 1 Lagoon Solids;
- Area of Concern 2 Western Area Soil;
- Area of Concern 3 Eastern Area Soil;
- Area of Concern 4 Shallow Fill Unit Groundwater;
- Area of Concern 5 Deeper Sand Unit Groundwater;
- Area of Concern 6 Bedrock Groundwater;
- Area of Concern 7 Dense Non-Aqueous Phase Liquid;
- Area of Concern 8 Drainage Ditch Surface Water;
- Area of Concern 9 Hackensack River Surface Water;
- Area of Concern 10 Drainage Ditch Sediments;
- Area of Concern 11 Hackensack River Sediments; and,
- Area of Concern 12 Transformer Area.

Figure 6-2 displays the locations of the various Areas of Concern. The following subsections discuss each of the Areas of Concern. Brief discussions of the scope and the results of the historical investigations are provided.

6.1 AREA OF CONCERN 1 – LAGOON SOLIDS

Residual materials, comprised of solids and oily materials, are currently present in the lagoon located in the eastern portion of the property. This subsection summarizes the investigative activities conducted to date to determine the extent and/or chemical composition of lagoon solids.

Hydrogeologic Investigation (Weston 1984) - One sediment sample was collected from the western section and one from the eastern section of the lagoon as part of this investigation. The samples were analyzed for pH, total chromium (Cr), hexavalent chromium (Cr(VI)), and Extraction Procedure (EP) Toxicity metals.

Phase II Dioxin Investigation (NJDEP, 1985) — Two solid samples were collected for dioxin analysis. One sample was collected from the western section and one sample was collected from the eastern section of the lagoon as part of this NJDEP investigation. Based on the analytical results, which indicated the presence of Dioxin in one of the samples, the NJDEP directed SCCC to conduct staged Dioxin investigations.

Stage I, II, and III Dioxin Investigations (Weston, 1987 and 1988) - In February and March 1987, SCCC performed a Stage I Dioxin investigation that included collection of samples from borings located in a grid fashion across the lagoon. Samples were typically collected from four separate depths at each of the 20 locations. The two deep samples from each location were archived for future analysis if the shallower samples revealed the presence of dioxin. As a result of the presence of Dioxin in some of the Stage I samples, the Stage II and Stage III investigations were completed, which consisted of the analysis of these archived samples. As part of this investigation, a total of eighty (80) samples of the lagoon solids were analyzed for Dioxin.

Remedial Investigation (Weston, 1993) - Two solid and two aqueous samples were collected from the lagoons and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Polychlorinated Biphenyls (PCBs), and Target Analyte List (TAL) metals.

As reported in the Weston RI Report, the lagoons occupy a surface area of approximately 33,000 square feet and have an average solids thickness of five to six feet. Thus, the lagoons contain approximately 7,300 cubic yards of solid material.

Appendix E includes a sample location map and Section E.1 of Appendix E includes data tables summarizing the results of the historical analyses of the lagoon solids. Testing conducted during the RI indicates that the lagoon material is comprised primarily of naphthalene, with lesser amounts of other volatile (benzene, ethylbenzene, and toluene) and semi-volatile organic compounds (polynuclear aromatic hydrocarbons and phenols). Hexavalent chromium was not detected in the lagoon solids. The results of the Dioxin analyses indicate the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in 46 of the 82 samples analyzed. Review of the SCCC Site process descriptions and the listed hazardous waste definitions in Subpart D of 40 Code of Federal Regulations (CFR) Part 261 indicates that the materials within the lagoon are not a Resource Conservation and Recovery Action (RCRA) listed waste.

The lagoons have been investigated during multiple prior investigations and will also be subjected to waste characterization sampling and analysis during the planned IRAW. No additional investigation of the lagoons is planned for the Phase II SRI.

6.2 AREA OF CONCERN 2 – WESTERN AREA SOIL

The investigative activities conducted to characterize the soils that are located west of the railroad right-of-way on the SCCC Site are as follows:

Hydrogeologic Investigation (Weston 1984) - Eleven soil samples were collected during monitoring well installation in the western portion of the SCCC Site. The samples were analyzed for pH, total chromium, hexavalent chromium, and EP Toxicity metals. In addition, three of the soil samples were split with the NJDEP and analyzed for VOCs.

Phase II Dioxin Investigation (NJDEP, 1985) - In May 1985, six soil samples were collected for Dioxin analysis from the western portion of the site. Areas investigated by the NJDEP included the following:

- Storage tanks in the western section of the Site near Building 2;
- Rail spur south of Building 2;
- Areas receiving drainage from southwest section of the Site (2 samples);
- Open area devoid of vegetation just west of the railroad right-of-way; and,
- Rail spur south of the warehouse.

The results of these analyses indicated that 2,3,7,8-TCDD was not present in any of the six samples.

Interim Remedial Measures Sampling (French & Parrello, 1991) - Prior to implementation of the IRMs at the SCCC Site (Section 2.5.1), additional soil sampling was performed to determine the limits of the COPR-impacted surface soil. Twenty-three surface soil samples were collected from the western portion of the SCCC Site and analyzed for hexavalent and total chromium.

Remedial Investigation (Weston, 1993) - Seven test pits were excavated to determine the thickness of the COPR soil. One sample of the soil directly underlying the COPR soil was collected for analysis at each of the seven locations. These samples were analyzed for hexavalent chromium.

Three soil borings were completed to the top of the varved clay unit at locations adjacent to Building 2 where above-ground tanks were once located and chemicals for production or shipment were unloaded/loaded. Six soil samples (two from each of the borings) were analyzed for VOCs, SVOCs, pesticides/PCBs, and metals.

Focused Remedial Investigation (ERM 1997) - A total of three soil borings were advanced to the top of the varved clay unit to determine the presence/absence of Dense Non-Aqueous Phase Liquid (DNAPL), and to provide information regarding the topography of the meadow mat and varved clay. Three discrete soil samples were submitted for analysis of VOCs and "lighter weight" SVOCs.

Supplemental Remedial Investigation (Key Environmental, Inc., 1999) - Two borings were completed to the varved clay unit in the western section of the site to investigate the possible presence of a surficial source of contamination in this area. Three soil samples from each of the borings were analyzed for SVOCs.

Appendix E includes a sample location map and Section E.2 of Appendix E includes data tables summarizing the results of the historical analyses of the SCCC Site. The results of these activities indicate the presence of chlorobenzene, 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and naphthalene at concentrations greater than the New Jersey Non-Residential Direct Contact Soil Cleanup Criteria (NRDCSCC). In addition, surface soils in the western portion of the Site were also analyzed for hexavalent chromium during an investigation conducted by Maxus. The results of these analyses show the presence of hexavalent chromium at concentrations greater than the NRDCSCC at several locations.

Multiple additional borings and associated sampling and analysis are planned for the western area soils to further define the horizontal and vertical extent of constituents in western area soils. The scope of the additional investigation activities is discussed in Sections 7 and 8.

6.3 AREA OF CONCERN 3 – EASTERN AREA SOIL

The following paragraphs summarize the investigative activities conducted to characterize the soils located east of the railroad right-of-way on the SCCC Site:

Hydrogeologic Investigation (Weston 1984) - Six soil samples were collected during monitoring well installation in the eastern portion of the SCCC Site. The samples were analyzed for pH, total chromium, hexavalent chromium, and EP Toxicity metals. In addition, two of the soil samples were split with the NJDEP and analyzed for VOCs.

Phase II Dioxin Investigation (NJDEP, 1985) - In May 1985, six soil samples were collected for Dioxin analysis. Areas investigated by the NJDEP included the following:

- Rail siding for naphthalene operations in the northern section of the site, just east of the railroad right-of-way (2 samples);
- Dichlorobenzene storage tanks in the eastern section of the Site;
- Trichlorobenzene storage tanks in the eastern section of the Site;
- Area east of the lagoon; and,
- Open area devoid of vegetation in the eastern section of the Site.

The results of these analyses indicated that 2,3,7,8-TCDD was not present in five of the six samples. The only soil sample that contained a detectable concentration of 2,3,7,8-TCDD was collected in the former dichlorobenzene tank farm area.

Stage I, II, and III Dioxin Investigations (Weston, 1987 and 1988) - Surface and subsurface soil samples were collected for Dioxin analyses from seven locations around the perimeter of the lagoon and from four locations along the Hackensack River bank. 2,3,7,8-TCDD was not detected in any of these samples. Additional surface soil sampling was conducted in the area between the dichlorobenzene tank farm and the distillation building, and in the area south of the lagoon. No 2,3,7,8-TCDD was detected except in one of the samples collected between the dichlorobenzene tank farm and the distillation building.

Interim Remedial Measures Sampling (French & Parrello, 1991) - Prior to implementation of the IRMs at the SCCC Site (Section 2.5.1), additional soil sampling was performed at the request of Maxus to determine the limits of the chromium impacted surface soil. Thirteen surface soil samples were collected from the eastern portion of the SCCC Site and analyzed for hexavalent chromium and total chromium.

Remedial Investigation (Weston, 1993) - Ten shallow soil samples were collected from locations around the former storage tanks adjacent to the distillation building in the eastern section of the SCCC Site. These samples were analyzed for VOCs and SVOCs. One test pit was excavated to determine the thickness of the COPR soil. One sample of the soil directly underlying the COPR soil was collected for analysis. The sample was analyzed for hexavalent chromium.

Focused Remedial Investigation (ERM 1997) - A total of 11 soil borings were advanced to the top of the varved clay unit to determine the presence/absence of DNAPL and to provide information regarding the surfaces of the meadow mat and varved clay. Five discrete soil samples were submitted for analysis of VOCs and "lighter weight" SVOCs.

Appendix E includes a sample location map and Section E.2 of Appendix E includes data tables summarizing the results of the historical analyses of the SCCC Site soils. The results of these activities indicate the presence of chlorobenzene, 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and naphthalene at concentrations greater than the NRDCSCC.

The investigation of surface soils in the eastern portion of the Site show the presence of hexavalent chromium at concentrations greater than the NRDCSCC in certain areas located to the north and south of the lagoons. The presence of 2,3,7,8-TCDD in soil is limited to surface soil in the vicinity of the former dichlorobenzene storage tank area.

Additional surface and subsurface soil samples will be obtained and analyzed further to define the horizontal and vertical extent of constituents in the eastern area soils. The scope of the additional investigation activities is discussed in Sections 7 and 8.

6.4 AREA OF CONCERN 4 – SHALLOW FILL UNIT GROUNDWATER

The following summarizes the investigative activities conducted to characterize the shallow fill unit groundwater on the SCCC Site:

Hydrogeologic Investigation (Weston 1984) - Five monitoring wells were installed in the shallow fill unit (8 to 10 feet deep). Groundwater samples from each of the wells were analyzed for VOCs, base/neutral extractable organic compounds, hexavalent chromium, and total chromium.

Remedial Investigation (Weston 1993) - Five additional monitoring wells were installed in the shallow fill unit. Groundwater samples were collected from these monitoring wells and were analyzed for TCL VOCs, SVOCs, PCBs, TAL metals, and hexavalent chromium. In addition, samples from four monitoring wells adjacent to the lagoons were analyzed for Dioxin.

Appendix E includes a sample location map and Section E.3 of Appendix E includes data tables summarizing the results of the historical analyses of the shallow fill unit groundwater. The results of these activities indicate that concentrations of volatile organic compounds (VOCs), chlorobenzene and dichlorobenzene isomers, and semi-volatile organic compounds (SVOCs), naphthalene and 1,2,4-trichlorobenzene, and hexavalent chromium in groundwater in the shallow fill unit exceed the NJDEP Groundwater Quality Standards (GWQS) for a Class IIA aquifer. Dioxin (2,3,7,8-TCDD) was not detected in the shallow fill unit groundwater samples. The distribution of DNAPL in the shallow unit is described in Section 6.7.

Additional investigation of the shallow fill unit groundwater is planned for the Phase II SRI. A comprehensive round of groundwater sampling and analysis will be completed to determine the current condition of groundwater. Water level measurements will be completed to investigate groundwater flow under current conditions. The scope of the additional investigation activities is discussed in Sections 7 and 8.

6.5 AREA OF CONCERN 5 – DEEPER SAND UNIT GROUNDWATER

The following paragraphs summarize the investigative activities conducted to characterize the deeper sand unit groundwater on the SCCC Site:

Hydrogeologic Investigation (Weston 1984) - Five monitoring wells were installed in the deeper sand unit (18 to 20 feet deep). Groundwater samples from each of the wells were analyzed for VOCs, base/neutral extractable semi-volatile organic compounds, and hexavalent and total chromium.

Remedial Investigation (Weston 1993) - Fifteen (15) monitoring wells were installed in the deeper sand unit. Groundwater samples were collected from these monitoring wells and were analyzed for TCL VOCs, SVOCs, PCBs, TAL metals, and hexavalent chromium. In addition, samples from three monitoring wells adjacent to the lagoons were analyzed for 2,3,7,8-TCDD. A second round of sampling was conducted by Weston as part of the RI. Samples from nine wells installed within the deeper sand unit were analyzed for VOCs, SVOCs, chromium and lead.

Supplemental Remedial Investigation (KEY 1999) - Two additional deeper sand unit monitoring wells were installed. Groundwater samples were collected from the two new monitoring wells and were analyzed for TCL SVOCs.

Appendix E includes a sample location map and Section E.3 of Appendix E includes data tables summarizing the results of the historical analyses of the deeper sand unit groundwater. The results of these activities indicate that organic constituents of interest (COIs) in groundwater in the deeper sand unit are widely distributed across the Site.

Chlorobenzene, dichlorobenzene isomers, and naphthalene were detected in the deeper sand unit groundwater at concentrations that exceed the NJDEP GWQS for a Class IIA aquifer. Chlorinated VOCs have also been detected in the deeper sand unit along the northern property boundary. Concentrations of total chromium in the deeper sand unit groundwater also exceed the Class IIA GWQS. However, no hexavalent chromium has been detected in the deeper sand unit.

Additional investigation of the deeper sand unit groundwater is planned for the Phase II SRI. Additional monitoring wells will be installed to further define the extent of dissolved phase groundwater impacts in the deeper sand zone to the south and southwest of the Site. A comprehensive round of groundwater sampling and analysis will be completed to determine the current condition of groundwater. Water level measurements will be completed to investigate

groundwater flow under current conditions. The scope of the additional investigation activities is discussed in Sections 7 and 8.

6.6 AREA OF CONCERN 6 – BEDROCK GROUNDWATER

Groundwater samples were collected for analysis in 1998 prior to sealing the former production well at the SCCC Site. The purpose of this analysis was to determine appropriate management options for groundwater displaced from the well during the abandonment procedure.

The results of the deep groundwater sample analyses are presented in Section E.4 in Appendix E. Certain high molecular weight polynuclear aromatic hydrocarbon (PAH) compounds and metals (lead and chromium) were reported at concentrations slightly greater than the NJDEP Class II-A GWQS.

Based upon the low mobility of the constituents detected in the production well samples and the absence of the more mobile and prevalent constituents present in the shallow aquifers (e.g., naphthalene and dichlorobenzenes), it is likely that the detections resulted from the introduction of surficial fill (or soil) particulates into the water column through the well bore. More than 40 feet of low permeability varved clay underlies the entire site and separates the deeper sand unit and the upper section of the bedrock unit. Also, as indicated previously, the vertical permeability of this unit is on the order of 10⁻⁸ cm/sec. The thickness, continuity and low permeability of the varved clay unit preclude the advective transport of dissolved constituents through the underlying strata to the bedrock unit.

Based on available data, no evidence exists to indicate that bedrock groundwater has been adversely impacted as a result of Site operations. No additional investigation of bedrock groundwater is planned for the Phase II SRI.

6.7 AREA OF CONCERN 7 – DNAPL

As part of the Focused RI, all monitoring wells were checked for the presence of DNAPL. DNAPL was detected in four monitoring wells screened in the deeper sand unit. The apparent thicknesses of the DNAPL accumulated in these wells were measured. A table summarizing these measurements is included in Section E.5 in Appendix E. Samples of the DNAPL were also collected for chemical characterization. The results of these analyses indicate the DNAPL is comprised primarily of 1,2,4-trichlorobenzene, naphthalene and the dichlorobenzene isomers. A table summarizing these results is also included in Section E.5 of Appendix E. A sample location map is provided in Appendix E for reference.

The presence of DNAPL at the Site was further evaluated during the Supplemental RI. Delineation of the extent of DNAPL was completed using LIF technology. Thirty-one soundings were advanced to the varved clay at locations across the Site. At four locations where the LIF data were deemed inconclusive in terms of DNAPL absence/presence, confirmatory soil borings were completed.

A comprehensive evaluation of all available information regarding occurrence of DNAPL was completed as part of the SRI data evaluation process. In addition to the LIF readings, information reviewed and considered in this evaluation included boring log descriptions, DNAPL thickness measurements, soil analytical data and groundwater analytical data.

The presence of DNAPL in the shallow fill unit above the meadow mat appears, for the most part, to be limited to the area immediately surrounding the lagoons and the area adjacent to Building 4. It does not appear that significant lateral migration of DNAPL in the shallow fill unit has occurred based on review of historical information (boring logs, groundwater analytical results) and the LIF data.

The SRI results indicate that DNAPL is more widely distributed in the deeper sand unit than in the shallow fill unit, and is present directly on the top of the varved clay. This indicates that DNAPL is present from west of the lagoon area to the vicinity of the former railroad right-of-way. Also, DNAPL is present in the deeper sand unit at the northern property boundary and in the area between the lagoons and the river. DNAPL was also inferred to be present in the area south of the lagoons and along the southwest property boundary in the vicinity of Buildings 2 and 4.

Multiple additional borings are planned for the Phase II SRI to further define the nature and extent of DNAPL impacts. Characterization of the extent of DNAPL will be completed in both onsite and offsite locations. The scope of the additional investigation activities is discussed in Sections 7 and 8.

6.8 AREA OF CONCERN 8 – DRAINAGE DITCH SURFACE WATER

In October 2002, the U.S. Environmental Protection Agency (EPA) collected surface water samples for analysis from 17 locations within the Southern Drainage ditch, swales that discharge to the ditch, and a "wetland" area on the adjacent Seaboard Site that is hydraulically connected to the ditch. The samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, pesticides and PCBs. The results of these analyses are presented in the *Sampling Report for the Standard Chlorine Site* (EPA, 2002).

Appendix E includes a sample location map and Section E.6 of Appendix E includes data tables summarizing the results of the analyses of the drainage ditch surface water. The results of these analyses indicate the presence of chromium at a concentration greater than the Surface Water Quality Criteria (SWQC) in one sample (SW-12) that was collected immediately adjacent to the stone-covered area where Maxus constructed an IRM for COPR soils. Chromium concentrations in samples collected downstream of this location are less than the SWQC. The 1,2,4-trichlorobenzene concentration in the surface water sample collected furthest from the river (SW-21) also exceeded its SWQC. Concentrations of 1,2,4-trichlorobenzene in the downstream samples are less than the SWQC.

Other than the aforementioned two exceedances, concentrations of COIs in the drainage ditch surface water samples collected by EPA are less than the respective SE2 SWQC.

Existing analytical data are considered adequate to characterize surface water conditions at the Site. An Interim Response Action is planned for the drainage ditch to address potential impacts.

6.9 AREA OF CONCERN 9 – HACKENSACK RIVER SURFACE WATER

EPA collected four samples of water discharging to the Hackensack River during its October 2002 investigation of the SCCC Site. Three locations adjacent to the SCCC Site (designated SW-1 through SW-3) were sampled. The fourth location (SW-4) was located north of the SCCC Site and was designated by EPA as a "background" location.

Split surface water samples were collected by Tierra at these locations. The split samples were analyzed for total and hexavalent chromium.

Appendix E includes a sample location map and Section E.6 of Appendix E includes data tables summarizing the results of the analyses of the Hackensack River surface water. A sample of surface water seepage along the bank of the Hackensack River collected by EPA (SW-01) contained total chromium at a concentration of 3 mg/L, which is slightly less than the NJDEP Class SE2 SWQC of 3.23 mg/L. Total chromium was measured at concentrations of 2.09 and 0.855 mg/L, respectively, in the primary and duplicate Tierra split samples collected from this location. Hexavalent chromium was not detected in the Tierra split samples collected from this location at a detection limit of 0.010 mg/L.

Chlorinated aromatic hydrocarbons were also detected in these samples. However, concentrations of these constituents are much less than their respective SE2 SWQC. Naphthalene concentrations in the surface water samples collected along the bank of the river ranged from less than the method detection limit (SW-01) to 0.045 mg/L (SW-02). There is no SWQC for naphthalene specified in N.J.E.C 7:9B.

Sampling of surface water in the Hackensack River was biased towards locations where the greatest impact, if any, would be expected and no exceedances of the SWQC were reported. As a result, no additional investigation of the Hackensack River is planned pursuant to implementation of the Phase II SRI.

6.10 AREA OF CONCERN 10 - DRAINAGE DITCH SEDIMENT

The EPA collected sediment samples at the same 17 locations where surface water samples were collected within the drainage ditch network and the hydraulically connected wetland on the Seaboard Site. For discussion purposes only, comparison of the sediment concentration is made to the NJDEP Marine/Estuarine Screening Guidelines, Effects Range-Median (ER-M) criterion, as these criteria are used for screening purposes, are not enforceable environmental standards, and should not be construed as remediation standards that are applicable to these Sites.

Appendix E includes a sample location map and Section E.6 of Appendix E includes data tables summarizing the results of the analyses of the drainage ditch sediment samples. Chromium concentrations exceed the ER-M in all 17 samples. Naphthalene concentrations greater than the ER-M were reported in nine (9) of the 17 samples. Dioxin concentrations in the sediment samples collected on the SCCC Site were in many instances (eight of the seventeen samples collected within the ditch system), less than the background Dioxin concentration measured at the EPA-designated background location (S-04) within the river (0.000008 mg/kg). Of the nine samples where Dioxin concentrations exceeded the background concentration, only four samples contained Dioxin concentrations greater than 0.000080 mg/kg. Three of these samples were taken in the open water "wetland" which is hydraulically connected to the ditch and located on the adjacent Seaboard Site. Dioxin concentrations in the remaining five samples were only slightly greater than the background concentration and ranged from 0.000009 to 0.000050 mg/kg.

The Dioxin investigation completed by the NJDEP identified only two areas on the SCCC Site where Dioxin was present (lagoon solids and the former distillation building area). Migration of Dioxin-impacted media from these areas to drainage ditches is unlikely.

Dioxin was not detected in any of the samples that were collected from monitoring wells installed around the perimeter of the lagoon. The results of groundwater analyses conducted by Weston during the RI are indicative of the immobility of Dioxin in groundwater. The lagoons were constructed below the surrounding ground elevation. Hence, it is unlikely that Dioxin from the lagoon solids would have been transported to the sediments via storm water runoff. The solubility of Dioxin in water is extremely low and it is immobile in groundwater due to its affinity for adsorption to organic carbon in the aquifer matrix. As a result, transport of Dioxin to sediments by a groundwater migration pathway is not viable.

The topography surrounding the distillation building is relatively flat, and is therefore not conducive to transport of impacted soil via overland flow. The distance from the distillation building to the branch of the southern ditch is approximately 500 feet and as a result of the relatively flat topography, it is unlikely that Dioxin from this area has been transported to the sediments via overland flow. In addition, because of the low solubility and low mobility of Dioxin in groundwater, it is unlikely that the Dioxin was transported to the sediments via groundwater migration and discharge. The absence of Dioxin in surface soil samples collected between drainage ditches and the potential source areas where Dioxin was previously detected (i.e., the lagoon and the distillation building area) suggest that migration of Dioxin from these areas has not occurred.

Existing analytical data are considered adequate to characterize sediment impacts in the drainage ditch. Additional investigation data will be collected for waste classification purposes during the implementation of the IRAW. An Interim Response Action is planned for the drainage ditch to address potential impacts.

6.11 AREA OF CONCERN 11 – HACKENSACK RIVER SEDIMENT

The near-shore sediments in the Hackensack River were characterized via sampling and analyses conducted by Enviro-Sciences, Inc. (ESI)³ in 2000 and by EPA in 2002.

ESI collected surficial sediment samples from nine locations in the Hackensack River adjacent to the site. These samples were analyzed for VOCs, base/neutral extractable organic compounds (including a scan for Dioxin), priority pollutant metals, hexavalent chromium, total organic carbon (TOC), and particle size distribution. The analytical data were provided to the NJDEP in a submittal dated October 23, 2000.

The EPA collected sediment samples at three locations adjacent to the SCCC Site (designated S-1 through S-3). A fourth location (S-4) was located north of the SCCC Site and was designated by EPA as a "background" location. Sediment samples collected by EPA were analyzed for TCL VOCs, TCL SVOCs, TAL metals, pesticides and PCBs, dioxins and furans, and TOC.

Tierra collected split sediment samples at the locations sampled by EPA and analyzed the samples for hexavalent chromium by EPA SW-846 Methods 3060/7199.

Appendix E includes a sample location map and Section E.6 of Appendix E includes data tables summarizing the results of the analyses of the Hackensack River sediment. The results of the sampling and analyses completed by ESI and EPA indicate that chromium concentrations in the near-shore Hackensack River surficial sediments exceed the ER-M criterion at eight of nine locations sampled by ESI and in each of the three (3) samples collected by EPE. Hexavalent chromium was not detected in any of the split samples analyzed by Tierra. Naphthalene concentrations exceed the ER-M criterion in eight (8) of these twelve (12) samples. Dioxin was detected in the three surficial sediment samples collected by EPA at concentrations ranging from 0.000040 mg/kg to 0.000096 mg/kg.

Enviro-Sciences, Inc., November 2000, Remedial Action Workplan.

Additional investigation of the near-shore Hackensack River sediments is planned pursuant to implementation of the IRAW. Supplemental characterization of the sediments will also be completed during the Phase II SRI as discussed in Section 9.

6.12 AREA OF CONCERN 12 – TRANSFORMER AREA

As part of the RI, Weston collected a sample of "sediment" from the surface of a concrete pad in a former transformer area. This sample was analyzed for PCBs. A concrete chip sample of the transformer pad and samples of surrounding surface soils were collected for laboratory analysis as part of the Supplemental RI. These samples were also analyzed for PCBs.

Appendix E includes a sample location map and Section E.7 of Appendix E includes data tables summarizing the results of the analyses of these transformer pad area samples. The results of the concrete chip sample indicated concentrations of PCBs greater than the NRDCSCC. PCBs were not detected in the surrounding surface soil samples.

Existing analytical data are considered adequate for characterization of this AOC. Remediation of this area, including the collection of confirmation samples, is planned during implementation of the Interim Response Action. No additional data collection activities are planned for the Phase II SRI.

7.0 AREA OF CONCERN SAMPLING SUMMARY

As discussed in the preceding section, additional investigation of multiple Areas of Concern is planned for the Phase II SRI. The following Areas of Concern will be investigation during the Phase II SRI:

- Area of Concern 2 Western Area Soil;
- Area of Concern 3 Eastern Area Soil;
- Area of Concern 4 Shallow Fill Unit Groundwater;
- Area of Concern 5 Deeper Sand Unit Groundwater;
- Area of Concern 7 Dense Non-Aqueous Phase Liquid; and,
- Area of Concern 11 Hackensack River Sediments.

Note that additional Site data will also be collected pursuant to implementation of the IRAW. Collection of data during IRAW implementation will provide additional information regarding the following Areas of Concern:

- Area of Concern 1 Lagoon Solids;
- Area of Concern 2 Western Area Soil;
- Area of Concern 3 Eastern Area Soil;
- Area of Concern 4 Shallow Fill Unit Groundwater;
- Area of Concern 5 Deeper Sand Unit Groundwater;
- Area of Concern 7 Dense Non-Aqueous Phase Liquid;
- Area of Concern 10 Drainage Ditch Sediments;
- Area of Concern 11 Hackensack River Sediments; and
- Area of Concern 12 Transformer Area.

Existing information collected as a result of historical investigations is sufficient for characterization of Areas of Concern 6, 8, and 9.

In accordance with N.J.A.C. 7:26E-4.2(b)6, a comprehensive sampling summary table has been prepared for the Phase II Supplemental Remedial Investigation. This table is provided as Table 7-1 and includes the following information on a sample-specific basis:

- Location
- Matrix
- Sample Depth
- Analytical Parameters
- Sampling Method

Detailed information regarding the scope of the investigation and plan view maps depicting sampling locations are provided in Sections 8.0 and 9.0 (Sampling Locations and Supplemental Sampling, respectively). Alpha-numeric sample designations corresponding to those used in Table 7-1 are used on the sample location maps.

In addition, a table summarizing other relevant information for the samples has been prepared. Table 7-2 lists the specific analytical methods, bottle requirements, preservation requirements, and holding time requirements for the various analyses. Note that Tables 7-1 and 7-2 comprise applicable tables for the Quality Assurance Project Plan and Field Sampling Plan, as discussed in Section 10.0.

Note that collection of data during implementation of the associated IRAW will result in the generation of a substantial amount of information that will be relevant to the Phase II SRI. Some specific IRAW-related activities, including groundwater sampling and analysis and sediment sampling and analysis will consist of collection of samples from the same locations as those that are planned during the Phase II SRI. To the extent practicable, the IRAW and Phase II SRI sampling and analysis activities will be coordinated to preclude multiple mobilizations and generation of redundant data.

8.0 PROPOSED SAMPLING LOCATIONS

As previously indicated, multiple Site investigations have been completed since 1983. In addition, a substantial amount of investigative work will be completed in conjunction with the planned Interim Response Action, as outlined in the IRAW that is currently under review by the NJDEP. It is planned that several of the Phase II SRI samples will be obtained during implementation of the IRAW as previously shown in Table 7-1. Specifically, sediment samples from the Hackensack River and subsurface soil samples from geotechnical borings GT-1 through GT-7 will support both the Phase II SRI and the IRAW. In addition, DNAPL samples from wells MW-3L and MW-13L will support both the Phase II SRI and the IRAW. To preclude any schedule delays, samples from these locations will be collected and analyzed at risk (for the entire suite of IRAW and Phase II SRI parameters) in the event that the IRAW and SRIWP approvals do not coincide.

This section identifies additional investigative activities required to complete site delineation. The scope of the Phase II SRI activities has been developed via consideration of discussions during a January 12, 2005 meeting between NJDEP and Group representatives, via consideration of existing site data, and via consideration of NJDEP comments on previous plans, specifically, the May 2006 Interim Response Action Workplan (IRAW) and the October 2004 Pre-Design Investigation Workplan. The scope of work for the investigation has been developed to accomplish the following objectives.

- To define the extent of DNAPL within the fill and deeper sand units onsite and on adjacent properties;
- To complete groundwater quality characterization Site-wide and in off-site down-gradient areas; and,
- To complete surface and subsurface soil delineation onsite and on adjacent properties.

The remainder of this section discusses DNAPL, groundwater, and surface/subsurface soil characterization activities, respectively. In addition to the preceding, additional characterization of near-shore Hackensack River sediments (above and beyond that proposed for the IRAW implementation) is also planned. The supplemental sampling activities for the near-shore Hackensack River sediments are discussed in Section 9.0 (Other Sampling Proposals).

8.1 DNAPL DELINEATION (AREAS OF CONCERN 2, 3, AND 7)

Multiple borings and subsurface soil sampling and analysis will be conducted to complete DNAPL delineation at the Site. The primary objectives of this investigation are to identify/confirm the extent of DNAPL impacts and to identify areas exhibiting the presence of potentially recoverable DNAPL. The boring program and sampling and analysis activities are discussed in the remainder of this subsection.

Boring Completion

A minimum of 21 additional soil borings (D-1 through D-21) will be completed to further delineate the limits of potentially recoverable DNAPL in the following areas:

- Off-Site to the south of Buildings 2 and 4;
- Off-Site to the southwest of monitoring well MW-3L;
- Off-Site in the southeastern portion of the Diamond Site;
- Off-Site between the former New York and Greenwood Lake Railroad Right-of-Way and the Hackensack River;
- On-Site west of the former New York and Greenwood Lake Railroad Right-of-Way and ROST borings R-30, R-31, and R-32;
- On-Site in the vicinity of Buildings 2 and 4; and
- The area north of the lagoon between the location of MW-7L and boring R-12.

The locations of these proposed soil borings are depicted on Figure 8-1. DNAPL delineation will address both the shallow fill and the deeper sand unit. As the investigation progresses, additional borings may be added to the program should it be determined that such borings are necessary to complete the DNAPL delineation. The DNAPL delineation effort will be supplemented by the observations made during installation of landside soil borings to be completed during implementation of the IRAW.

Borings will be advanced to the top of the varved clay layer (a depth of approximately 20 feet bgs) using HSA techniques. In areas where COPR soil occurs, temporary steel casing will be keyed into the meadow mat prior to advancement beneath the fill materials to eliminate the potential for impacts to the deep sand aquifer. The casing will be set in a bentonite slurry seal at the meadow mat-fill interface.

Subsurface Soil Sampling and Analysis

Continuous split spoon samples will be obtained throughout the entire depth of each borehole to accommodate visual determination of the presence/absence of potentially recoverable DNAPL. If the presence of DNAPL is not observed in a given borehole, a soil sample will be collected from the interval directly above the varved clay for laboratory analysis to confirm that DNAPL is not present. If DNAPL is noted at the base of the deeper sand within a given boring, a sample will be obtained from the varved clay to determine if DNAPL has penetrated the clay to any extent. These samples will be analyzed for TCL VOCs, TCL SVOCs, and TAL metals. In addition, two varved clay samples are planned for onsite Borings D-14 and D-15. These samples will be analyzed for TCL VOCs, TCL SVOCs, TAL metals, and hexavalent chromium. Analytical data (i.e., TCL VOCs and TCL SVOCs) obtained from these borings will be reviewed as an additional indicator of the presence or absence of DNAPL.

Some of the boreholes where DNAPL is not encountered may be converted to monitoring wells. These wells will be installed to further define the extent of dissolved phase groundwater impacts beyond the areas of DNAPL impact. The total depth of these wells is assumed to be twenty-two

feet to allow for the screen section to extend across the sand unit-varved clay interface to permit the detection of any DNAPL that may be migrating at this depth interval. Monitoring wells will be constructed of two-inch diameter polyvinyl chloride (PVC) screen and riser with a five-foot screen length. Monitoring well permits will be obtained and construction will be completed by a driller licensed in the State of New Jersey. Well construction will be in accordance with N.J.A.C. 7:9D, the FSP (see Section 10.0), and the 2005 NJDEP Field Sampling Procedures Manual (FSPM).

All borings will be abandoned with a cement-bentonite mixture placed using the tremie method. Visually impacted soil cuttings will be containerized for subsequent management. All drilling locations will be staked for subsequent surveying. Following the installation and development of the monitoring wells, a site-wide round of groundwater elevation and apparent DNAPL thickness measurements will be completed.

DNAPL Sampling and Analysis

DNAPL characterization sampling proposed by Brown and Caldwell in the July 2001 RI Work Plan Addendum for Site 116 has been incorporated into the scope of work for this Phase II SRI. Specifically, six DNAPL samples will be obtained from existing monitoring wells for TCL VOC, TCL SVOC, and total and hexavalent chromium analysis. These samples will be obtained from wells MW-3L, MW-4L, MW-8L, MW-12L, MW-13L, and MW-14L. DNAPL samples for physical characterization will be obtained from wells MW-3L and MW-13L during implementation of the IRAW. To the extent practicable, the DNAPL chemical characterization samples for these wells will be obtained at the same time as the physical characterization samples.

8.2 GROUNDWATER DELINEATION (AREAS OF CONCERN 4 AND 5)

To complete groundwater delineation at the SCCC Site, a series of four deeper sand unit monitoring wells (MW-18L through MW-21L) will be installed to the south of the SCCC Site on

the adjacent Seaboard Site (Figure 8-1) and a comprehensive groundwater sampling/analysis and water level measurement event will be completed. Because the shallow fill groundwater in the southern portion of the SCCC Site is known to discharge to the ditch separating the two properties, no shallow fill wells are proposed for the northern portion of the Seaboard Site.

Monitoring Well Installation

The deeper sand unit monitoring wells will be completed at an elevation just below the sand-varved clay contact which is typically found at a depth of approximately 20 feet. Well drilling will be completed by HSA techniques supplemented by continuous split-spoon sampling. Each boring will be logged by an onsite geologist utilizing the Unified Soil Classification System.

The monitoring well, filter pack, and well seal will be installed through the hollow stem auger drill string. A weighted tape will be utilized throughout the procedure to measure depth of pipe and annular materials. The auger string will be gradually and methodically removed from the borehole as the installation of various annular materials progresses.

Two-inch diameter schedule 40 PVC screen and riser will be utilized for well construction. For each well, the well screen interval will be five feet long and will extend upward from approximately six-inches below the sand-varved clay contact into the sand unit. Upon completion of well installation, each monitoring well will be developed to remove fine sediment resulting from the drilling process. Development water will be collected and discharged to the lagoons. Upon completion of drilling activities, all wells will be surveyed horizontally and vertically. Wells will be surveyed by a surveyor licensed in the State of New Jersey to ± 0.01 feet and ± 0.1 feet vertical and horizontal accuracy, respectively.

Fill Unit Groundwater Sampling and Analysis

Groundwater samples will be obtained for chemical analysis from 20 existing upper (fill) zone monitoring wells (Table 7-1) located on the SCCC and Diamond Sites and one well located on

Site 48 to the west of the SCCC Site. These samples will be obtained to provide information regarding the horizontal extent of groundwater impact in the fill unit. Samples will be obtained using low flow sampling techniques in accordance with the FSP and FSPM. Samples will be analyzed for TCL VOCs, TCL SVOCs, total TAL metals, cyanide, total and dissolved total and hexavalent chromium, Oxidation-Reduction Potential, and pH. Analyses will be completed in accordance with the QAPP (see Section 10.0).

Water level and apparent DNAPL thickness measurements will also be obtained prior to the sampling event. The specific fill zone wells to be sampled are depicted on Figure 8-2. Note that sampling and analysis of six of these wells is planned in support of IRAW implementation. To the extent practicable, these sampling activities will be coordinated to avoid generation of redundant groundwater information.

Deeper Sand Unit Groundwater Sampling and Analysis

Groundwater samples will be obtained from 31 deeper sand zone monitoring wells (Table 7-1) located on the SCCC and Diamond Sites, from four new monitoring wells installed on the adjacent site (Seaboard) to the south and from one well located on Site 48 to the west of the SCCC Site. These samples will be obtained to provide information regarding the horizontal extent of impact in the lower (deeper sand) zone. Samples will be obtained using low flow sampling techniques. Samples will be analyzed for TCL VOCs, TCL SVOCs, total TAL metals, cyanide, total and dissolved total and hexavalent chromium, oxidation reduction potential, and pH.

Water level and apparent DNAPL thickness measurements will also be obtained prior to the sampling event. The specific lower zone wells to be sampled are depicted on Figure 8-2. Note that sampling and analysis of six of these wells is planned in support of IRAW implementation. To the extent practicable, these sampling activities will be coordinated to avoid generation of redundant groundwater information.

8.3 SOIL DELINEATION (AREAS OF CONCERN 2 AND 3)

Additional surface and subsurface soil sampling is planned for the Phase II SRI to accommodate lateral and vertical delineation activities at the Site. The scope of the surface and subsurface soil sampling and analysis programs is discussed in the remainder of this subsection.

Surface Soil Sampling and Analysis

To supplement existing data, eleven additional surface soil samples (denoted as SC-SS-01 through SC-SS-11) will be collected from the study area. Four of the locations are off-Site along the northern edge of the Seaboard Site and will supplement information collected in July 2008 during the IRAW pre-design investigation on the Seaboard Site. The remaining seven locations are located onsite to the west and south of the former lagoon and along the northern property boundary, as depicted on Figure 8-1. The samples will be collected from the 0 to 0.5 foot interval and will be analyzed in accordance with the procedures outlined in the QAPP. The samples will be analyzed for semi-volatile organic compounds (including naphthalene, other and chlorinated Polychlorinated Dibenzodioxins/Polychlorinated PAHs, benzenes), Dibenzofurans (PCDD/PCDF), PCBs, total and hexavalent chromium, Oxidation Reduction Potential, and pH. All sampling locations will be marked and staked for subsequent survey.

Vertical Delineation Soil Sampling and Analysis

To complete vertical delineation, samples will be obtained to investigate the extent and vertical migration of organic constituents and to supplement existing data regarding the lateral and vertical extent of chromium impacts. Sampling will be accomplished via a series of twenty-seven fill unit chromium delineation borings (denoted as CR-1 through CR-27) and three varved clay borings (VC-1 through VC-3). Samples will also be obtained from selected geotechnical borings (GT) where the borings occur in areas where additional data may be required for delineation. Figure 8-1 depicts the planned boring locations. To the extent practicable, soil samples will be obtained from discrete 6-inch intervals subject to constraints imposed by the

volume of sample required to complete the analyses. The various types of borings to be completed are discussed in the remainder of this subsection.

<u>Fill Unit Soil Borings (CR-1 through CR-27)</u> - The borings will be advanced to the top of the meadow mat to accommodate the collection of samples of fill material and the meadow mat. These boring locations represent the six locations proposed by Brown and Caldwell in the July 2001 Remedial Investigation Work Plan plus one additional boring (CR-7) along the western boundary of the site as requested by NJDEP in the General Comments pertaining to the October 2004 Pre-Design Investigation Workplan as well as twenty additional borings to delineate chromium impacts on the adjacent Seaboard Site.

Borings will be advanced using a hollow stem auger with continuous split spoon sampling or via direct push techniques with collection of continuous two or four foot core samples. Sampling will be conducted in accordance with the FSP. Samples will be obtained from three specific depths at each of the planned locations: the surface interval (0-0.5 feet), from the depth where the water table is first encountered, and from the upper horizon of the meadow mat. The samples will be analyzed for total and hexavalent chromium, Oxidation Reduction Potential, and pH. Upon completion of sampling, each boring will be abandoned with a cement-bentonite grout, emplaced by the tremie tube method. Visually impacted drill cuttings will be containerized for subsequent management. All locations will be staked for subsequent survey.

<u>Varved Clay Borings (VC-1 through VC-3)</u> - Three varved clay borings will be advanced to define the vertical extent of site constituents. These borings will be advanced by hollow stem auger techniques with continuous split spoon sampling. Temporary steel casing will also be set and sealed into the meadow mat during drilling of the varved clay borings as previously described in Section 8.1.

Additionally, note that varved clay analytical samples will also be obtained from geotechnical borings GT-1, GT-2, GT-3, and GT-4 as well as from barrier wall borings BW-2, BW-3, BW-4, and BW-5 to be installed during implementation of the IRAW. At these locations, samples from

within the varved clay will be obtained for laboratory analysis of the following constituents: TCL VOCs, TCL SVOCs, TAL metals, and hexavalent chromium.

9.0 OTHER SAMPLING PROPOSALS (AREA OF CONCERN 11)

In addition to the sampling discussed in Sections 7.0 and 8.0, additional characterization sampling and analysis is also proposed for the near-shore Hackensack River sediments. Multiple sediment samples will be obtained from the near-shore Hackensack River sediment bed as part of implementation of the IRAW. These samples will be obtained primarily for the purposes of assessing the potential use of the USEPA's Area of Contamination policy for onsite consolidation of the near-shore sediments. Additional analyses are proposed herein to address the requirements of N.J.A.C. 7:26E-4.7. To preclude any schedule delays, samples from these locations will be collected and analyzed at risk (for the entire suite of IRAW and Phase II SRI parameters) in the event that the IRAW and SRIWP approvals do not coincide.

The nine sediment sample locations planned for the IRAW were depicted on Figure 8-1. Two depth-specific samples will be collected from each location using a hand auger. One sample will be obtained from a depth of 0.0 to 1.0 feet. The volatile organic sample aliquot for this sample will be obtained from the 0.5 to 1.0 foot interval. A second sample will be obtained from a depth of 2.0 to 3.0 feet. The purpose of these samples is to delineate both the horizontal and vertical extent of sediment impacts. It is planned that additional analyses will be completed for these samples (as summarized in Table 7-1). The following additional analyses will be completed for the sediment samples to be obtained adjacent to the SCCC Site during IRAW implementation:

- Acid Volatile Sulfide/Simultaneously Extracted Metals*
- PCB Congeners and Homologues
- Pesticides and Aroclors
- Chlorinated Herbicides
- Total Extractable Petroleum Hydrocarbons
- Oxidation-Reduction Potential (ORP)
- * Simultaneously Extracted Metals (Ag, Cd, Cu, Pb, Hg, Ni, and Zn)

Including the analyses planned for these sediment samples pursuant to the implementation of the IRAW, the samples will be analyzed for the following complete list of analytical parameters:

- Volatile Organics
- Semivolatile Organics
- TAL Metals*
- Cyanide
- Acid Volatile Sulfide/Simultaneously-Extracted Metals
- Hexavalent Chromium
- PCB Congeners and Homologues
- Pesticides and Aroclors
- Chlorinated Herbicides
- PCDDs/PCDFs
- Total Extractable Petroleum Hydrocarbons
- Total Organic Carbon
- pH
- ORP
- * Target Analyte List Metals (Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Th, V, and Zn)
- ** Simultaneously Extracted Metals (Ag, Cd, Cu, Pb, Hg, Ni, and Zn)

The results of the sediment sampling and analysis will be presented and discussed in the Phase II SRI Report. Sediment results will be contrasted to appropriate sediment screening criteria. In addition, graphical depictions of the extent of potential sediment impacts will be prepared. An evaluation of potential migration pathways will also be completed. The analytical suite for the sediment samples is equivalent to that used for the Hackensack River Study Area (HRSA) Remedial Investigation and the results of the HRSA RI will be used as appropriate to identify background or reference sediment conditions.

10.0 QUALITY ASSURANCE PROJECT PLAN

A comprehensive Quality Assurance Project Plan (QAPP) was developed as a project planning document for the IRAW. The IRAW QAPP covers all aspects of sampling and analysis required pursuant to the Phase II Supplemental RI. Because the field work for the two investigations (i.e., the IRAW data acquisition and the Phase II SRI) will be coordinated and collected concurrently to the extent practicable, the IRAW QAPP and the associated Field Sampling Plan (FSP) are incorporated to this document by reference. The only required revisions to the IRAW QAPP and FSP are revised tables that outline the sampling and analysis requirements. These tables were previously presented as Tables 7-1 and 7-2 and constitute addenda to the IRAW QAPP and FSP, which were provided as Appendices D and E of the IRAW, respectively.

11.0 HEALTH AND SAFETY PLAN

A comprehensive Site- specific Health and Safety Plan was prepared and provided as Appendix C of the IRAW. The existing HASP covers all aspects of Site activities and is therefore incorporated to the SRIWP by reference.

REFERENCES

Key (Key Environmental, Inc.), April 1998. <u>Remedial Action Work Plan - Former Koppers Seaboard Site, Kearny, New Jersey</u>. Pittsburgh, Pennsylvania.

Weston (Roy F. Weston, Inc.) May, 1993. <u>Draft Remedial Investigation for the Standard Chlorine Chemical Company, Inc. and Standard Naphthalene Products Inc. Properties, Kearny, New Jersey.</u> West Chester, Pennsylvania.

the state of the s

STANDARD CHLORINE CHEMICAL CO., INC.

DRWN: CRJ	DATE: 01/15/08		
CHKD: RJH	DATE: 01/15/08	ENVIRONMENTAL	
APPD: JSZ	DATE: 01/15/08	INCORPORATED	
SCALE: 1"= 2000"			

PHASE II SUPPLEMENTAL REMEDIAL INVESTIGATION SCCC SITE KEARNY, NEW JERSEY

PROJECT NO: 08-613 FIGURE 5-5

REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLES
OF JERSEY CITY, AND WEEHAWKEN, NEW JERSEY (1967)

QUADRANGLE LOCATION

ISSUE DATE:

SITE LOCATION MAP AND ONE MILE RADIUS

REV # DATE

DESCRIPTION

PROJECT NO: 08-613

FIGURE 6-1

TABLE 1-1

HISTORICAL RI AND IRM ACTIVITIES

SCCC AND DIAMOND SITES – KEARNY, NEW JERSEY

Date	Activity	For	Workplan/Report
1983- 1984	Hydrogeologic Investigation, SCCC Site	SCCC	Hydrogeologic Investigation, Standard Chlorine Chemical Company, Kearny, New Jersey (Weston, January 1984).
1985	Phase II Dioxin Investigation, SCCC Site	NJDEP	Phase II Dioxin Site Investigation, Final Report (E.C. Jordan, Inc. 1985).
1985- 1988	Stage 1, 2, and 3 Dioxin Investigations, SCCC Site	SCCC	Sampling and Analysis of Potentially Dioxin- Contaminated Materials in Waste Lagoons, Stage I Analysis Report (Weston, 1987); and Sampling and Analysis of Potentially Dioxin- Contaminated Materials in Waste Lagoons, Stage II and III (Weston, 1988).
1989- 1990	IRMs, SCCC	SCCC	Draft Interim Measures Work Plan, Standard Chlorine Chemical Co., Inc, Kearny, New Jersey (Weston, November 1989); Final IRM Workplan (Weston February 1990).
1990	IRM Work Plan, SCCC Site	SCCC	Final IRM Workplan (Roy F. Weston, Inc., February 1990).
1991	Chromium IRMs, SCCC Site and Diamond Site	Maxus Energy Corporation (Maxus) ⁽¹⁾	Interim Remedial Measures Work Plan (French & Parrello, 1991).
1990- 1993	RI and Supplemental RI, SCCC Site	SCCC	Draft Remedial Investigation for the Standard Chlorine Chemical Company, Inc. and Standard Naphthalene Products Inc. Properties, Kearny, New Jersey (Weston, May 1993).
1996- 1997	Focused Remedial Investigation, SCCC Site	SCCC	Focused Remedial Investigation (FRI) Report, Standard Chlorine Chemical Company, Inc. and Standard Naphthalene Products, Inc. Site, Kearny, New Jersey (ERM, Inc., January 1997).
1996	Production Well Closure, SCCC Site	SCCC	Workplan for Production Well Closure (ERM., December 1996).
1997	Proposed Remedial Action Plan, Eastern 1/3 SCCC Site	SCCC	Preliminary Remedial Action Plan, Standard Chlorine Chemical Co. Inc. and Standard Naphthalene Products, Inc. Site, Kearny, New Jersey (ERM January 1997).
1997- 1999	Supplemental Remedial Investigation, SCCC Site	SCCC	Supplemental Remedial Investigation Report, Standard Chlorine Chemical Company, Kearny, New Jersey (Key Environmental, Inc., April 1999).

TABLE 1-1 HISTORICAL RI AND IRM ACTIVITIES SCCC AND DIAMOND SITES – KEARNY, NEW JERSEY

Date	Activity	For	Workplan/Report
2000	Remedial Action	SCCC	Remedial Action Workplan, Standard
	Workplan for		Chlorine Chemical Company Site (Enviro-
	Containerized Materials		Sciences, Inc., June 5, 2000).
2000	Soil/Sediment Sampling	SCCC	Letter to Maria-Franco-Spera (NJDEP)
	and Analysis		(Enviro-Sciences, Inc., October 23, 2000).
2000	Septic Tank Closure	SCCC	Letter to Kevin Marlowe (NJDEP) (Enviro-
	(NJPDES-DGW) IRM	,	Sciences, Inc., August, 2000).
2000	Remedial Action	SCCC	Conceptual Remedial Action Workplan,
	Workplan, Baseline		Standard Chlorine Chemical Company, Inc.,
	Ecological Evaluation,		Kearny, New Jersey (Enviro-Sciences, Inc.,
	IRM for Northern		October 1999); Remedial Action Workplan,
	Outfall		Standard Chlorine Chemical Company, Inc.,
		,	Kearny, New Jersey (Enviro-Sciences, Inc.,
			November 2000).
2000	Characterization of	SCCC	Letter to Maria-Franco-Spera (NJDEP)
	Containerized Materials		(Enviro-Sciences, Inc., October 23, 2000).
2001	Remedial Investigation,	Chemical Land	Remedial Investigation Report, Site 113,
	Diamond Site	Holdings, Inc.	Diamond Site (Brown and Caldwell, April
		(CLH) ⁽¹⁾	2001).
2002	Surface Water and	EPA	Sampling Report for the Standard Chlorine
	Sediment Sampling		Site (United States Environmental Protection
2001		222221	Agency, 2002).
2004	Interim Response	SCCC/Diamond	Interim Response Action Workplan - SCCC
	Action Workplan,		and Diamond Sites (Key Environmental, Inc.,
2001			March 2004).
2004	Lead and Asbestos	SCCC/Diamond	Pre-Demolition Asbestos and Lead Building
	Survey, SCCC and		Surveys, Standard Chlorine Chemical
	Diamond Site Buildings		Company Site and Diamond Site (Omega
2004			Environmental Services, Inc., March 2004).
2004	Asbestos Management	SCCC	Workplan for Phase I Asbestos Management
	and Building		and Select Building Demolition, SCCC Site
2004	Demolition Workplan		(Key Environmental, Inc., June 2004).
2004	Wetlands Delineation	SCCC/Diamond	Wetlands Delineation Report for Standard
			Chlorine Chemical Company and Former
			Diamond Sites (Princeton Hydrologic, L.L.C.,
2004	D D :	accar:	September 2004).
2004	Pre-Design	SCCC/Diamond	Pre-Design Investigation Workplan, Standard
	Investigation Workplan		Chlorine Chemical Company Site and Former
			Diamond Site (Key Environmental, Inc.,
			October 2004).

TABLE 1-1 HISTORICAL RI AND IRM ACTIVITIES SCCC AND DIAMOND SITES – KEARNY, NEW JERSEY

Date	Activity	For	Workplan/Report
2004	Solidification	SCCC	Solidification Treatability Study Workplan,
	Treatability Study		Standard Chlorine Chemical Company Site
	Workplan	-	(Key Environmental, Inc., October 2004).
2004	Aerial Topographic	SCCC/Diamond	Topographic Base Map prepared by Air
	Survey		Survey, Dulles, VA. April 14, 2001.
2005	Asbestos Removal,	SCCC	Work Plan for Dilapidated Non-Process
	Waste Classification,		Building Demolition, Standard Naphthalene
	Demolition, Disposal		Products Co., Inc., Finished Goods Area (Key
	(SCCC Buildings)		Environmental, August 2005).
2005	Scope of Work –	SCCC	Electronic Mail to Mr. Gary Lipsius (Langan
	Supplemental RI		Engineering and Environmental Services,
			Inc., July 21, 2005).
2006	Interim Response	SCCC/Diamond	Interim Response Action Workplan (IRAW).
	Action Planning		Key Environmental, Inc. June 2006.
2006	Numerical Groundwater	SCCC/Diamond	Groundwater Flow and Transport Model and
	Modeling		Barrier Wall Evaluation, Standard Chlorine
			Chemical Company, Inc. Site and Diamond
			Shamrock Site (GeoTrans, Inc., June 23,
			2006)
2006	Request for Use of	SCCC/Diamond	Letter to Mr. Chris Kanakis and Mr. Frank
	USEPA Area of		Faranca (NJDEP) (Key Environmental, Inc.,
• • • • • • • • • • • • • • • • • • • •	Contamination Policy		July 3, 2006).
2006	Vault Content Sampling	SCCC	Letter to Mr. Robert Confer (NJDEP)
	/Waste Classification		(Langan Engineering and Environmental
	Determination Request		Services, Inc., October 25, 2006).
2007	Interim Response	SCCC/Diamond	Interim Response Action Workplan (IRAW),
	Action Workplan		SCCC and Diamond Sites (Key
			Environmental, Inc., May 2007).
2007	Interim Response	SCCC/Diamond	Interim Response Action Workplan (IRAW)
	Action Workplan		Addendum - Responses to NOV Issues and
	Addendum		Proposed Revisions - SCCC and Diamond
			Sites (Key Environmental, Inc., November 16,
			2007).

^{1.} Some of the work at the SCCC Site has been conducted under an Administrative Consent Order dated April 17, 1990 entered by NJDEP with Occidental Chemical Corporation (OCC) and Chemical Land Holdings, (CLH) Inc. (now Tierra) relating to COPR (the "Diamond ACO"). Maxus historically had responsibility for overseeing work under the Diamond ACO for OCC, as successor to Diamond Shamrock Chemicals Company.

TABLE 7-1

SAMPLE SUMMARY⁽¹⁾ SCCC SITE PHASE II SUPPLEMENTAL REMEDIAL INVESTGATION KEARNY, NEW JERSEY

	T ****	T	·																	
		1					ļ	т				Required	Analyses	(2)						
Location	Area of Concern	Description	SRIWP Text Section	Sample Matrix	Boring Depth (ft)	Sample Depth (ft)	TCL	TCL	TAL	Hexavalent Chromium	Total Chromium	PCDD & PCDF	PCBs	Cyanide	Field	Hd	ORP	HRSA ⁽³⁾ RI Suite	Sampling Method	Purpose
						SOIL	SAMPLI	NG				•					1			
D-1 through D-21	7	Horizontal and Vertical DNAPL Delineation Samples	8.1	Soil	25	TBD ⁽⁴⁾	\bowtie	\searrow	\supset										Split Spoons	Horizontal and Vertical DNAPL Delineation
D-14 and D-15	3, 7	Vertical DNAPL/Chromium Delineation Samples	8.1	Soil	25	TBD	X	\searrow	\supset	\mathbf{X}						X	X		Split Spoons	Vertical Delineation of Potential Impact Below the Sand Unit
VC-1 through VC-3	2, 3	Vertical Organics and Metals Delineation Samples	8.3	Soil	30	TBD (Varved Clay)	X	\searrow	\times						-	X			Split Spoons	Vertical Delineation of Potential Impact Below the Sand Unit
GT-1 through GT-4	2,3,7	Vertical Organics and Metals Delineation Samples	8.3	Soil	30	TBD (Varved Clay)	X	\searrow	\searrow							X			Split Spoons	Vertical Delineation of Potential Impact Below the Sand Unit
CR-1 through CR-27	2, 3	Vertical Chromium Characterization Samples	8.3	Soil	10 ⁽⁵⁾	0 - 10 ⁽⁵⁾				X	\times				~~	X			Split Spoons or Geoprobe	Horizontal and Vertical Delineation of Cr(VI)
SC-SS-01 through SC-SS-11	2, 3	Surface Soil Characterization Samples	8.3	Surface Soil	0.5	0 - 0.5		X		X	$\overline{\mathbf{X}}$	X	\times			X			Split Spoons	Horizontal Delineation of Surficial Impacts
					* * * * * * * * * * * * * * * * * * * *	SEDIME	NT SAMI	PLING	,				<u> </u>				1		The state of the s	To a control of the c
HRWC-05 through HRWC-13	11	Hackensack R. Surface Sediment Characterization Samples	9.0	Sediments	3	0 - 1.0 2.0-3.0										X	X		Hand Augers	Horizontal and Vertical Delineation of Impacts
						GROUNDW	ATER SA	MPLIN	G			'	-1-				Y	Y		,
21 Wells ⁽⁶⁾	4	Upper Fill Zone Groundwater Characterization	8.2	Ground Water		Upper Zone (Fill)	X	\supset	\supset	\supset				X	\times	X	X		Low Flow	Upper Zone Groundwater Characterization
36 Wells ⁽⁶⁾	5	Deeper Sand Zone Groundwater Characterization	8.2	Ground Water		Lower Zone (Sand)	X	\searrow	\bigcirc	\mathbf{X}				X	X	X			Low Flow	Lower Zone Groundwater Characterization
						DNAPI	SAMPL	ING					•				1.	×		-
MW-4L, 8L, 12L & 14L	7	DNAPL Chemical Characterization Samples	8.1	DNAPL	-	TBD	X	\supset		X	X								Low Flow	DNAPL Characterization
MW-3L & 13L ⁽⁷⁾	7	DNAPL Chemical Characterization Samples	8.1	DNAPL	-	TBD	X	\boxtimes			X								Low Flow	DNAPL Characterization

1. Additional relevant information will be obtained pursuant to an associated Interim Response Action Workplan (IRAW). Relevant analytical data for samples shown in bold, shaded, italics will be obtained via implementation of the IRAW. To preclude any schedule delays, samples for these locations will be collected at risk and will be analyzed for the complete suite of IRAW and Phase II SRI parameters in the event that approval of the IRAW and SRIWP is not concurrent.

2. TCL VOCs - Target Compound List Volatile Organic Compounds.

TAL Metals - Target Analyte List Metals.

ORP - Oxidation-Reduction Potential

TCL SVOCs - Target Compound List Semi-Volatile Organic Compounds.

 $PCDD/PCDF-Polychlorinated\ Dibenzo dioxins\ and\ Polychlorinated\ Dibenzo furans.$

Field - Field parameters consisting of pH, oxidation-reduction potential, dissolved oxygen, temperature, and turbidity.

3. HRSA RI Suite - Additional analysis of Interim Response Action Workplan SCCC sediment samples to ensure consistency with the Hackensack River Study Area Remedial Investigation. Additional analyses consist of the following:

Acid Volatile Sulfide/Simultaneously Extracted Metals

Polychlorinated Biphenyl Congeners and Homologues

Pesticides and Herbicides

Total Extractable Petroleum Hydrocarbons

- 4. TBD To be determined based on visual inspection/PID measurements. Samples will be collected directly above the Varved Clay if no DNAPL is encountered. Samples will be collected from the Varved Clay if DNAPL is present directly above the clay.
- 5. Hexavalent chromium delineation sampling will be completed for the 0 to 0.5 foot interval, at the water table, and from the upper horizon of the meadow mat. Four of the surface samples from these locations will be obtained from co-located surface soil sample locations SC-SS-08, SC-SS-09, SC-SS-10, and SC-SS-11.
- 6. Groundwater samples will be analyzed for total metals and both total and dissolved total and hexavalent chromium. Monitoring wells in the two zones are as follows:

Upper Zone								
SC-MW-11U	SC-MW-15U	113-W-116S	113-W-120S	113-W-124S	48-W-108S			
SC-MW-12U	113-W-113S	113-W-117S	113-W-121S	113-W-301S				
SC-MW-13U	113-W-114S*	113-W-118S	113-W-122S	113-W-302S				
SC-MW-14U	113-W-115S	113-W-119S	113-W-123S	113-W-303S				

				Lower Zone				
SC-MW-1L	SC-MW-5L	SC-MW-9L	SC-MW-13L	SC-MW-17L	MW-21L	113-W-104D	113-W-108D	113-W-303D
SC-MW-2L	SC-MW-6L	SC-MW-10L	SC-MW-14L	MW-18L	113-W-101D	113-W-105D	113-W-109D	113-W-304D
SC-MW-3L	SC-MW-7L	SC-MW-11L	SC-MW-15L	MW-19L	113-W-102D	,113-W-106D	113-W-301D	113-W-305D
SC-MW-4L	SC-MW-8L	SC-MW-12L	SC-MW-16L	MW-20L	113-W-103D	113-W-107D	113-W-302D	48-W-107D

- * Wells shown in bold italic typeface will be sampled to support IRAW implementation. To the extent practicable, the IRAW and RI groundwater sampling efforts will be coordinated and analyses for the two programs will not be duplicated.
- 7. Hexavalent chromium analysis of DNAPL samples from MW-3L and MW-13L is planned during IRAW implementation and is not repeated herein.

SAMPLING AND ANALYSIS REQUIREMENTS SCCC SITE PHASE II SUPPLEMENTAL REMEDIAL INVESTIGATION KEARNY, NEW JERSEY

Matr	ix Sample Summary	,	7	OA Sample	Frequency ⁽³⁾		Analytical Requirements Summary								
Analytical Parameter ⁽¹⁾	Sample Matrix ⁽²⁾	No. of Samples	Field Duplicates	Field Blanks		Trip Blanks	Method Reference ⁽⁴⁾	Bottle Type	Required Sample Volume ⁽⁵⁾	Preservation	Holding Time				
ORGANICS															
TCL VOCs	Subsurface Soil D-1 - D-21 VC-1- VC-3 GT-1 - GT-4	28	2	3	1/1		SW846 5035A SW846 8260B	Glass	Encore TM (3) or TerraCor Kits		14 days from collection if field preserved. Preservation within 48 hours if lab preserved.				
TCL VOCS	Groundwater See Table 7-1	57	3	6	3/3	1/shipment	SW846 8260B	Glass with Teflon TM -lined septum.	2 x 40 ml vials	4°C, HCl to pH<2	14 days.				
	DNAPL See Table 7-1	6	1	1	1/1	1/20 or 1/shipment	SW846 8260B	Glass with Teflon™- lined cap	2 x 40 ml vials	4°C, HCl to pH<2	14 days.				
	Surface Soil SC-SS-01 to 11	11	1	1	1/1		SW846 8270C	Glass	100 grams	4°C	7 days to extraction/40 days to analysis.				
TCL SVOCs	Subsurface Soil D-1 - D-21 VC-1- VC-3 GT-1 - GT-4	28	2		1/1		SW846 8270C	Glass	100 grams	4°C	7 days to extraction/40 days to analysis.				
	Groundwater See Table 7-1	57	3	6.	3/3		SW846 8270C	Glass with Teflon TM - lined cap (amber)	2 Liters	4°C	7 days to extraction/40 days to analysis.				
	DNAPL See Table 7-1	6	1	1	1/1		SW846 8270C	Glass with Teflon TM -lined cap (amber)	2 Liters	4°C	7 days to extraction/40 days to analysis.				
PCDD & PCDF	Surface Soil SC-SS-01 to 11	11	1		1/1		SW846 8290	4-oz glass	25 mg	4°C	1 year				
TCL PCBs	Surface Soil SC-SS-01 to 11	11	1		1/1		SW846 8082	Glass	4 ounces	4°C	7 days to extraction/40 days to analysis.				
PCB Congeners & Homologues	Sediment HRWC-05 -	9	1		1/1		SW846 1668A	Glass	8 ounces	4°C	7 days to extraction/40 days to analysis.				
TCL Pesticides	HRWC-13	9	1		1/1		SW846 8081A	Glass	8 ounces	4°C	14 days to extraction/40 days to analysis.				
TCL Herbicides		9	1		1/1		SW846 8151A	Glass	8 ounces	4°C	14 days to extraction/40 days to analysis.				
Total Extractable Pet. Hydrocarbons		9	1				NJ-TPH	Glass		4°C	14 days to extraction/40 days to analysis.				
INORGANICS		By Robert Areas Transport State Stat		5 2 2 2 7 4 2 3 3 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				The second secon		The second secon	and the second s				
TAL Metals (includes total Cr)	Subsurface Soil D-1 - D-21 VC-1- VC-3 GT-1 - GT-4	28	2				SW846 6000 and 7000 series	Glass	100 grams	4°C	28 days for Hg; 6 months for other metals				
,	Groundwater See Table 7-1	57	3	6			SW846 6000 and 7000 series	Plastic or glass	500 ml	HNO ₃ to pH<2; 4°C	28 days for Hg; 6 months for other metals				
Total Chromium	Surface Soil SC-SS-01 to 11 CR-1 - CR-7 CR-12 - CR-27	34	2				SW846 6000 series	Glass	4 ounces	4°C	6 months				
	Subsurface Soil CR-1 - CR-27	54	3				SW846 6000 series	Glass	4 ounces	4°C	6 months				
	DNAPL See Table 7-1	6	1	1	 ,	I	SW846 6000 series	Glass	4 ounces	4°C	6 months				

December 2008

SAMPLING AND ANALYSIS REQUIREMENTS SCCC SITE PHASE II SUPPLEMENTAL REMEDIAL INVESTIGATION KEARNY, NEW JERSEY

Matri	x Sample Summary	y	<u> </u>	QA Sample	Frequency			<u>.</u>	Analytical Require	ements Summary	
Analytical Parameter ⁽¹⁾	Sample Matrix ⁽²⁾	No. of Samples	Field Duplicates	Field Blanks	MS/MSDs	Trip Blanks	Method Reference ⁽⁴⁾	Bottle Type	Required Sample Volume ⁽⁵⁾	Preservation	Holding Time
Cyanide	Groundwater See Table 7-1	57	3	6			SW846 9012A	Plastic or glass	100 grams	4°C	14 days
Hexavalent Chromium	Surface Soil SC-SS-01 to 11 CR-1 - CR-7 CR-12 - CR-27	34	5				SW846 7199	Plastic or glass	100 grams	4°C	28 days
	Subsurface Soil D-14 & D-15 VC-1 - VC-3 GT-1 - GT-4	63 -					SW846 7199	Plastic or glass	100 grams	4°C	28 days
	CR-1 - CR-27 Groundwater See Table 7-1	57	3	6	7-		SW846 7199	Plastic or glass	500 ml	4°C	24 hours
	DNAPL See Table 7-1	4	1	1			SW846 7199	Plastic or glass	500 ml	4°C	24 hours
Acid Volatile Sulfide Simultaneously Extracted Metals ⁽⁶⁾	Sediment HRWC-05 - HRWC-13	9	1	1			EPA-821	Glass	8 ounces	4°C	Preparation and Analysis - 14 Days
INDICATOR PARAM	TETERS			•	-						
	Surface Soil SC-SS-01 to 11 CR-1 - CR-7 CR-12 - CR-27	34					SW846 9045C	Glass	4 ounces	4°C	As soon as possible after sample receipt
Hydronium Ion (pH)	Subsurface Soil D-14 & D-15 VC-1 - VC-3 GT-1 - GT-4	63					SW846 9045C	Glass	4 ounces	4°C	As soon as possible after sample receipt
	CR-1 - CR-27 Sediment HRWC-05 - HRWC-13	9					SW846 9045C	Glass	4 ounces	4°C	As soon as possible after sample receipt
	Groundwater ⁽⁷⁾ See Table 7-1	57					EPA 150.1	Plastic	500 ml	4°C	As soon as possible after sample receipt
	Surface Soil SC-SS-01 to 11 CR-1 - CR-7 CR-12 - CR-27	34					ASTM D1498	Glass	4 ounces	4°C	As soon as possible after sample receipt
Oxidation-Reduction Potential	Subsurface Soil D-14 & D-15 VC-1 - VC-3 GT-1 - GT-4	63					ASTM D1498	Glass	4 ounces	4°C	As soon as possible after sample receipt
	CR-1 - CR-27 Sediment HRWC-05 - HRWC-13	9			~~		ASTM D1498	Glass	4 ounces	4°C	As soon as possible after sample receipt
	Groundwater ⁽⁷⁾ See Table 7-1	57					ASTM D1498	Plastic	500 ml	4°C	As soon as possible after sample receipt

Phase II Supplemental Remedial Investigation Work Plan (SRIWP) Standard Chlorine Chemical Company Site Kearny, New Jersey

TABLE 7-2

December 2008

SAMPLING AND ANALYSIS REQUIREMENTS SCCC SITE PHASE II SUPPLEMENTAL REMEDIAL INVESTIGATION KEARNY, NEW JERSEY

1. Abbreviations for analytical parameters are as follows:

PCBs -Polychlorinated Biphenyls

PCDF - Polychlorinated Dibenzofurans SVOCs - Semivolatile Organic Compounds TAL - Target Analyte List TCL - Target Compound List VOCs - Volatile Organic Compounds

PCDD - Polychlorinated Dibenzodioxins

2. Abbreviations for sample matrices are as follows:

Dense Non-Aqueous Phase Liquid

- 3. Quality assurance sample requirements as per the New Jersey Field Sampling Procedures Manual (August 2005) Section 2.5.
- 4. Abbreviations for analytical methods are as follows:

NJ-TPH

Total Extractable Petroleum Hydrocarbons analysis via New Jersey DEP method NJ-TPH-QAM-025-10/91.

EPA-821

DNAPL -

EPA Method EPA-821-R-91-100.

SW846 -

Environmental Protection Agency methods per Test Methods for Evaluating Solid Waste - Physical/Chemical Methods - SW846 (3rd Ed). (as revised and updated)

ASTM -

American Society for Testing and Materials.

- 5. Precleaned and preveserved sample bottles to be provided by the laboratory. Sample volumes to be minimized as possible based on minimum laboratory volume requirements.
- 6. Simultaneously Extracted Metals analysis for silver, cadmium, copper, lead, mercury, nickel, and zinc.
- 7. Groundwater sample to subjected to field measurement of pH, oxidation-reduction potential, temperature, dissolved oxygen, and turbidity. Water levels and DNAPL levels to be measured in all monitoring wells.

APPENDIX A HISTORICAL AERIAL PHOTOGRAPHS

SCCC SITE PRIOR TO INTERIM REMEDIAL MEASURES (1986)

SCCC SITE AFTER INTERIM REMEDIAL MEASURES (2006)

SCCC SITE AERIAL PHOTOGRAPH – 1953

SCCC SITE AERIAL PHOTOGRAPH – 1953 (ENLARGED PORTION OF ORIGINAL)

SCCC SITE AERIAL PHOTOGRAPH – 1966

SCCC SITE AERIAL PHOTOGRAPH – 1966 (ENLARGED PORTION OF ORIGINAL)

SCCC SITE AERIAL PHOTOGRAPH – 1976

SCCC SITE AERIAL PHOTOGRAPH – 1976 (ENLARGED PORTION OF ORIGINAL)

SCCC SITE AERIAL PHOTOGRAPH – 1985

SCCC SITE AERIAL PHOTOGRAPH - 1985 (ENLARGED PORTION OF ORIGINAL)

SCCC SITE AERIAL PHOTOGRAPH – 1995

SCCC SITE AERIAL PHOTOGRAPH – 1995 (ENLARGED PORTION OF ORIGINAL)

APPENDIX B
GENERAL SOILS MAP

Soil Legend

■ NJ014

NJ012

NJ036

NJ013

NJW

SOURCE Data compiled from SCS State Soil Geographic Database, U.S. Census TIGER data: Universal Transverse Mercator Projection, June 1993 General Soil Map Essex and Hudson Counties New Jersey

SEPTEMBER 1993 1007822

Essex and Hudson Counties - New Jersey

This general soil map shows the soils associations in Essex and Hudson Counties, New Jersey. Each map unit is a unique natural landscape with a distinctive pattern of soils, relief, and drainage. Typically, a map unit consists of three or more major soils and some minor soils. The soils making up one unit can occur in other units but in a different pattern.

The named components in a particular association, such as URBAN LAND-DUNELLEN-RIVERHEAD, are listed in descending order of occurrence in the map unit. URBAN LAND describes areas where 80 percent or more of the surface is covered with impervious material. No attempt is made to describe soils in this component of the association.

This map can be used to compare the suitability of large areas for general land uses. Because of its small scale, it is not suitable for planning the management of a farm, field or for selecting a site for a road, building or other structure. This map is not a substitute for on-site soil investigations for intensive land use planning.

Map Unit Symbol	Association Name	Description
NJ012	URBAN LAND-DUNELLEN-RIVERHEAD -	Nearly level to strongly sloping, deep and very deep, well drained gravelly, sandy loams. These soils formed in sandy, stratified glacial outwash on outwash plains and terraces and on river and stream terraces. Hydrologic group B. These soils are non-hydric.
NJ013	URBAN LAND-BOONTON-WETHERSFIELD -	Gently sloping to moderately steep, well drained and moderately well drained, very deep and deep gravelly loams formed in acid, reddish sandstone, shale, basalt and conglomerate glacial till over shale and basalt bedrock. These soils occur on upland glacial till plains and ridges. Hydrologic group C. These soils are non-hydric.
NJ014	BOONTON-URBAN LAND -WETHERSFIELD -	Gently sloping to very steep, well drained and moderately well drained, very deep and deep gravelly loams formed in acid, reddish sandstone, shale, basalt and conglomerate glacial till over shale and basalt bedrock. These soils occur on upland glacial till plains and ridges. Hydrologic group C. These soils are non-hydric.
NJ016	URBAN LAND-PARSIPPANY-HALEDON -	Nearly level to strongly sloping, poorly drained and somewhat poorly drained, very deep silt loams. Parsippany soils are poorly drained and formed in stratified, silty, old lake sediments in depressions and on low, level areas. Haledon soils formed in sandstone, shale and basalt glacial till over shale and basalt bedrock along drainageways, on broad till plains and ridges, and at the bases of till plains and ridges. Parsippany soils are in hyrologic group C/D and are hydric. Haledon soils are in hydrologic group C and are non-hydric.
NJ036	SULFAQUENTS-UDORTHENTS-PSAMMENTS -	Nearly level, very poorly drained, very deep mineral and organic soils on tide-flooded flats, and similar areas overlain by fill materials. Hydrologic group not assigned. Sulfaquents are hydric.
NJW	WATER	NJW WATER Information: Contact: District Conservationist Location: USDA-SCS

ALL SUS PROGRAMS AND SERVICES ARE OFFERED ON A NONDISCRIMINATORY BASIS, WITHOUT REGARD TO RACE, COLOR, NATIONAL ORIGIN, RELIGION, SEX AGE, MARITAL STATUS, OR HANDICAP Courthouse

Telephone: (201) 538-1552

Morristown, NJ 07960

APPENDIX C WETLANDS MAPS AND CLASSIFICATION TABLE

WETLANDS AND DEEPWATER HABITATS CLASSIFICATION

3 Rooted Vascular

4 Floating Vascular

6 Unknown Surface

5 Unknown Submergent

3 Cobble Gravel

4 Sand

5 Mud

6 Organic

7 Vegetated

3 Mud

4 Organic

3 Mud

4 Organic

5 Vegetated

^{*} STREAMBED is limited to TIDAL and INTERMITTENT SUBSYSTEMS, and comprises the only CLASS in the INTERMITTENT SUBSYSTEM.

^{**} EMERGENT is limited to TIDAL and LOWER PERENNIAL SUBSYSTEMS.

WETLANDS AND DEEPWATER HABITATS CLASSIFICATION

	soil, or		quately describe the wetlan				•	stem.	
	WATER REG	GIME		WATE	ER CHEMISTR	Υ	SOIL	SPECIAL MO	ODIFIERS
Non-	Tidal	Tidal		Coastal Halinity	Inland Salinity	pH Modifiers for all Fresh Water			
A Temporarily Flooded B Saturated C Seasonally Flooded D Seasonally Flooded/ Well Drained E Seasonally Flooded/ Saturated	H Permanently Flooded J Intermittently Flooded K Artificially Flooded W Intermittently Flooded/Temporary Y Saturated/Semipermanent/ Seasonal	K Artificially Flooded L Subtidal M Irregularly Exposed N Regularly Flooded P Irregularly Flooded	*S Temporary-Tidal *R Seasonal-Tidal *T Semipermanent-Tidal *V Permanent-Tidal U Unknown	1 Hyperhaline 2 Euthaline 3 Mixohaline (Brackish) 4 Polyhaline 5 Mesohaline 6 Oligohaline 0 Fresh	7 Hypersaline 8 Eusaline 9 Mixosaline 0 Fresh	a Acid t Circumneutral i Alkaline	g Organic n Mineral	b Beaver d Partially Drained/Ditched f Farmed	h <i>Diked/Impounded</i> r Artificial Substrate s <i>Spoil</i> x Excavated
F Semipermanently Flooded G Intermittently Exposed	Z Intermittently Exposed/Permanent U <i>Unknown</i>		ster regimes are only used in uenced, freshwater systems.						

NOTE: Italicized terms were added for mapping by the National Wetlands Inventory program.

APPENDIX D BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

ROY F. WESTON, INC. LAGOON DIOXIN INVESTIGATION (1987)

BORING LOG

SITE ID: East La	
METHOD: Vibracore,	Split Spoon, Driven DATE STARTED: 10 March 1987
FIELD REP: R. McAlis	DATE COMPLETE: 11 March 1987
WATER DEPTH: 1.75 FT	BACKGROUND OVA: Set to 1.0 units
D II D III (D -)	
DEPTH (FT)	DESCRIPTION
0 - 1.6	
0 - 1.0	Med. brown silt, soft, w/abundant opaque, white, bladed
	crystals, 0.5 in. long (approx.), semiconsolidated.
	OVA: 15 - 20 units.
	Sample: A-1 (vibracore), 0.5 - 1.5 ft.
1.6 - 2.25	Plack how to reference the state of the stat
1.0 - 2.23	Black tar, soft, w/trace brown silt.
	OVA: to 10 units.
	Sample: A-2-SS (Split Spoon) 1.8 - 2.2 ft.
2.25 - 2.6	Med. gray, fine sand and silt, trace black tar.
	OVA: 4 - 8 units.
	Sample: A-3-SS, 2.3 - 2.5 ft.
2.6 - 4.8	Black, soft tar, trace silt, trace debris.
-10	OVA: 4 - 6 units.
	Sample: A-4-SS, 1.8 - 2.4 ft.
4.8 - 5.7	Dark brown, soft peat and silt, trace fine sand, with
	abundant roots.
	(MEADOW MAT)
	OVA: 2 - 3 units.
	Ova: 2 - 5 units.
	TOTAL DEPTH: 5.7 ft.

NOTES: See text for location of boring.

BORING LOG

METHOD: Vibr	t Lagoon LOCATION ID: B acore; Split Spoon, DriveRATE STARTED: 10 March 1987 R. McAlister DATE COMPLETE: 10 March 1987 O.7 FT BACKGROUND OVA: Set to 1.0
DEPTH (FT)	DESCRIPTION
0 - 1.4	Med. brown silt, soft, w/abundant opaque, white, bladed crystals, 0.5 in. long (approx.), semiconsolidated. OVA: 15 - 20 units. Sample: B-1 (vibracore) 0.4 - 1.2 ft.
1.4 - 3.4	Black tar, soft, w/some med. brown silt. OVA: 10 units.
3.4 - 4.0	Med. brown silt and olive green sand, f., red gravel, soft, w/some crystals, bladed and granular. OVA: 10 - 15 units. Sample: B-2-SS (Split Spoon), 3.5 - 4.8 ft.
4.0 - 6.0	Black tar, soft, w/trace to little brown silt. Brick and wood fragments throughout. OVA: slowly increased to 10 units. Sample: B-3-SS, 4.3 - 5.0 ft. B-4-SS, 5.3 - 5.9 ft.
6.0 - 6.6	Dark brown peat and silt, w/trace fine sand, soft, with abundant roots. (MEADOW MAT) OVA: 2 - 3 units.

TOTAL DEPTH: 6.6 ft.

NOTES: See text for location of boring. Approximately 1.0 ft. of material, from depth 2.4 to 3.4 was not recovered in the spoon. Because of the very low blow count, and because of residue identified on the outisde of the spoon, this material is assumed to have been tar.

SITE ID: West La		LOCATION ID:	С
METHOD : Vibracore; S	plit Spoon, Driven	DATE STARTED:	27 Feb. 1987
FIELD REP: R. McAl		DATE COMPLETE:	10 Mar. 1987
WATER DEPTH: 2.3 F	T	BACKGROUND OVA:	
		•	
DEPTH (FT)	DESCRIPTION		
22111 (11)	DESCRIPTION		
0 - 1.0	OVA: 15 - 20 uni	<pre>, soft, w/abundant of long (approx.), semits. racore). 0 - 0.8 ft</pre>	iconsolidated.
1.0 - 2.3	Black tar, soft, fragments. OVA: 20 units. Sample: C-2H-SS,	w/trace to little si	lt, brick and wood
2.3 - 4.1	Black tar, soft, ova: 5 - 7 units Sample: C-3-SS,		
4.1 - 5.4	Dark brown sand (rw/brick fragments. OVA: 2 - 3 units. Sample: C-4-SS,	•	l black tar, soft,
5 6.0		nd silt, soft, trace	fine sand, w/

TOTAL DEPTH: 6.0 ft.

She	e e	t	1 0	E 1

SITE ID: West L		LOCATION ID:	D
METHOD : Vibracore; S			
FIELD REP: R. McAl		DATE COMPLETE:	
WATER DEPTH: 1.7	FT.	BACKGROUND OVA:	Set to 1.0 units
DEPTH (FT)	DESCRIPTION		
0 - 1.0	Crystals. Some black OVA: to 25 units.	soft, w/some opaque ack tar, wood fragme acore), 0.1 - 0.9	ents.
1.0 - 5.7	fine sand, trace by OVA: 20 units. Samples: D-2-SS, D-3-SS,	/some medium brown strick and wood debris 2.0 - 2.5 ft. 3.5 - 4.0 ft. 5.0 - 5.5 ft.	silt at top. Trace
	Dark brown peat and roots (MEADOW MAT). OVA: 2 - 4 units.	d silt, soft, trace	fine sand, abundant

TOTAL DEPTH: 6.5 ft.

Sh	e	e	t	1	οf	1

SITE ID: West Lag METHOD: Vibracore; S FIELD REP: R. McA WATER DEPTH: 5.6	Split Spoon, Driven DATE STARTED: 26 Feb. 1987 Lister DATE COMPLETE: 17 Mar. 1987
DEPTH (FT)	DESCRIPTION
0 - 0.7	Black to brown tar, soft, medium brown silt and sand (f.) and opaque white to yellow granular crystals. OVA: 25 - 30 units. Samples: E-1 (vibracore), 0 - 0.5 ft.
0.7 - 1.4	Medium brown silt and sand (vf.) and black tar, hard. OVA: to 12 units. Sample: E-2-SS, 0.8 - 1.3 ft.
1.4 - 2.4	Black tar mixed w/brown-red silt, w/abundant brick and wood debris. OVA: 7 - 8 units Samples: E-3-SS, 1.6 - 1.9 ft. E-4-SS, 2.0 - 2.3 ft.
2.4 - 2.8	Dark brown peat and silt, soft, trace fine sand abundant roots (MEADOW MAT). OVA: 2 - 4 units.
	TOTAL DEPTH: 2.8 ft.

Sheet 1 of 1

BORING LOG

SITE ID: West I	
	Split Spoon, Driven DATE STARTED: 26 Feb. 1987
FIELD REP: R. McA	
WATER DEPTH: 3.	O FT. BACKGROUND OVA: Set to 1.0
חבסקט /פק\	DECCRIPTION
DEPTH (FT)	DESCRIPTION
0 - 0.6	Medium brown silt, soft, w/abundant opaque white bladed crystals. Hard. OVA: to 25 units Sample: F-1 (vibracore), 0 - 0.6 ft.
0.6 - 5.5	Black tar, soft. *
	Sample: F-4-SS, 5.0 - 5.5 ft.
5.5 - 6.0	Dark brown silt and peat, soft, w/some brown to gray, fine to medium sand, abundant roots. (MEADOW MAT). OVA: 3.0.
	TOTAL DEPTH: 6.0 ft.

NOTES: See text for location of boring.

* Interval between 0.6 - 5.0 ft. was not recovered in four attempts. Hard material recovered from 0 - 0.6 ft. was believed to displace the very soft tar and prevent entry into the spoon.

SITE ID: West La	goon LOCATION ID: G
METHOD : Vibracore,	Split Spoon, Driven DATE STARTED: 26 Feb. 1987
FIELD REP: R. M	cAlister DATE COMPLETE: 6 Mar 1087
WATER DEPTH: 3.0	FT. BACKGROUND OVA: Set to 1.0
DEPTH (FT)	DESCRIPTION
	** **
•	
0 - 1.0	Opaque, white, bladed crystals, 0.1 in. long
	(approx), hard, mixed w/dark brown to black eilt
	and gravel.
·	OVA: to 15 units.
	Sample: G-1 (vibracore), 0 - 0.8 ft.
1.0 - 3.0	Plack the second of
3.0	Black tar, soft, w/trace brown silt. Trace wood fragments.
	OVA: 3 - 4 units.
	Sample: G-2-SS, 1.5 - 2.5 ft.
	Dampie: G-2-35, 1.5 - 2.5 ft.
3.0 - 3.7	Medium brown sand (fine) and silt.
	OVA: 2 - 3 units.
	Sample: G-3-SS, 3.0 - 3.5 ft.
3.7 - 4.4	Black tar, very soft.
	OVA: 2 - 3 units.
	Sample: G-4-SS, 4.0 - 4.3 ft.
4.4 - 5.6	Dark brown peat and silt, soft, trace reddish
	prown gravel, abundant roots.
	(MEADOW MAT)
	OVA: 3 units.

TOTAL DEPTH: 5.6 ft.

NOTE: See text for location of boring.

94 44

S	h	e	e	t	1	0	£	1

SITE ID: West L METHOD: Vibracore; S FIELD REP: R. Mc WATER DEPTH: 2.3	plit Spoon, Driven Alister	DATE COMPLETE:	H 26 Feb. 1987 6 Mar. 1987 Set to 1.0
DEPTH (FT)	DESCRIPTION		
0 - 1.5	and wood fragment OVA: 15 - 20 uni	S.	d crystals, few brick
1.5 - 2.2	Light brown silt, OVA: 1 - 3 units Sample: H-2-SS,		agments.
2.2 - 4.7	OVA: 1 - 3 units. Samples: H-3-SS,		wood fragments, trace
4.7 - 5.3	Dark brown silt, s (MEADOW MAT). OVA: 2.5 - 3.0 un	ome peat, some sand,	abundant roots
	TOTAL DEPTH: 5.3	ft.	

NOTE: See text for location of boring.

7

SITE ID: West La METHOD: Vibracore, S FIELD REP: R. McAl WATER DEPTH: 1.5	Split Spoon, Driven DATE STARTED: 27 Feb. 1987 Lister DATE COMPLETE: 17 Mar. 1987
DEPTH (FT)	DESCRIPTION
0 - 0.9	Opaque white, bladed crystals, mixed w/granular white crystals, hard. Trace of light brown silt, soft. OVA: to 50 units. Sample: I-lH (vibracore), 3 jars collected, 0 - 0.8 ft.
0.9 - 1.9	Dark brown to black, granular debris, w/abundant bladed crystals. OVA: to 20 units. Sample: I-2-SS, 1.3 - 1.8 ft.
1.9 - 4.1	Medium brown silt and sand (f.) mixed w/brick and wood fragments, abundant white bladed crystals throughout. OVA: to 20 units. Sample: I-3-SS, 2.5 - 3.5 ft.
4.1 - 5.5	Medium brown silt and sand (f) mixed w/tar (black, some brick and wood fragments. OVA: to 10 units. Sample: I-4-SS, 4.5 - 5.5 ft.
5.5 - 6.1	Black tar, thick, with some small brick fragments. OVA: 2 - 3 units.
6.1 - 6.7	Dark brown silt and peat, trace sand, abundant roots (MEADOW MAT). OVA: 2 - 3 units
	TOTAL DEPTH: 6.7 ft.

Shee	t	1	οf	1

SITE ID: Fast Lago METHOD: Vibracore	
FIELD REP: T. Marks	: Split-Spoon, DriveATE STARTED: 27 Feb., 1987
	DATE COMPLETE: 12 Mar., 1987
WATER DEPTH: 0.4 f	t. BACKGROUND OVA: Set to 1.0
DEPTH (FT)	DESCRIPTION
0 - 2.3	Opaque white, bladed crystals, w/trace lt. to med. brown silt, trace granular white crystals. OVA: to 90 units. Sample: J-lH (vibracore), 3 jars collected, 0.1 - 1.1 ft.
2.3 - 2.7	Lt med. brown silt, hard, mixed w/opaque white bladed crystals.
	OVA: >100 units. Sample: J-2-SS, 2.3 - 2.6 ft.
2.7 - 4.0	Dk. brown - black sand, loose, w/trace to some crystals, white-brown. OVA: 10-15 units. Sample: J-3-SS, 2.9 - 3.9 ft.
4.0 - 5.9	Black tar w/debris, predominantly small brick fragments. OVA: 2 - 5 units Sample: J-4-SS, 5.0 -5.8 ft.
5.9 - 6.2	Dark brown silt and peat, trace sand, roots (MEADON MAT). OVA: 3 units
	TOTAL DEPTH: 6.2 ft.

Sheet 1 of 1

BORING LOG

SITE ID: East La	agoon	LOCATION ID:	K
	Spoon, Driven	DATE STARTED:	12 Mar., 1987
	arks	DATE COMPLETE:	12 Mar., 1987
WATER DEPTH: 0	.7 ft.	BACKGROUND OVA:	Set to 1.0 unit
תבסדט (הא)	DDCCD1DD10:		
DEPTH (FT)	DESCRIPTION		
0 - 1.5	silt. OVA: 50-60 uni	opaque white bladed cry its. SS, 3 jars collected, C	
	Sample: K-III-C	by 5 jura corrected, c	
1.5 - 2.3	runny tar. OVA: 30 units.	white, tar-stained cry	stals, mixed with
2.3 - 3.2	wood fragments. OVA: 2-4 units		oris, brick and
3.2 - 6.3	Black tar, loos OVA: 2-4 units Sample: K-4-SS		•
6.3 - 6.7	Dark brown silt (MEADOW MAT). OVA: 2-4 units	and peat, trace sand,	, w/abundant roots
	TOTAL DEPTH: 6.	.7 ft.	

Sheet	_1_	οf	1
-------	-----	----	---

SITE ID: East L. METHOD: Split-Spoor FIELD REP: T. Marks WATER DEPTH: 0.5	DATE STARTED: 11 Mar., 1987 DATE COMPLETE: 11 Mar., 1987
DEPTH (FT)	DESCRIPTION
0 - 2.1	Brown - opaque white, bladed crystals, hard, trace to some silt. OVA: 10-15 units. Smaple: L-IH-SS, 3 jars collected, 0.2-1.2 ft.
2.1 - 3.8	Black- dark brown consolidated tar. Spoon refusal at 3.8 ft. OVA: 2-3 units. Samples: L-2-SS, 2.2 - 2.9 ft.; L-3-SS, 3.1 - 3.8 ft.
	TOTAL DEPTH: 3.8 ft.

NOTE: See text for location of boring.

Spoon refusal at 3.8 ft. No sample L-4-SS was collected.

Refusal noted after 50 minutes driving w/less than 0.2 ft.

advancement.

Sheet 1 of 1

BORING LOG

SITE ID: East La	
METHOD : Split-Spo	pon, Driven DATE STARTED: 12 Mar., 1987
FIELD REP: T. Marks	DATE COMPLETE: 12 Mar., 1987
WATER DEPTH: 0.8	Et. BACKGROUND OVA: Set to 1.0 unit
	BACKGROUND OVA: Set to 1.0 Unit
DEPTH (FT)	DESCRIPTION
	DESCRIFTION
0 - 0.9	Med. brown bladed crystals, some brown silt, soft.
	OVA: 20 units.
•	Sample: M-1-SS, 0 - 0.8 ft.
	5 to 10 to 1
0.9 - 1.8	Med. brown and black crystals, some brown silt, trace
	tar as stain.
	OVA: 15-17 units.
	OVA: ID-I/ MILLS.
1.8 - 2.6	Disply town mirror of with himself
1.0 - 2.0	Black tar mixed with bladed crystals.
	OVA: 10 units.
	Sample: M-2-SS, 1.8 - 2.4 ft.
2.6 - 4.8	71 1
2.0 - 4.0	Black tar, soft to runny, trace to some debris, pre-
	dominantly wood fragments.
	OVA: 3-7 units.
	Samples: M-3-SS, 3.0 - 3.7 ft; M-4-SS, 4.2 - 4.8 ft.
4.8 - 5.7	Dark brown peat and silt, soft, trace sand (f.),
	abundant roots (MEADOW MAT).
	OVA: 2 - 4 units.
	TOTAL DEPTH: 5.7 ft.

METHOD: Split- FIELD REP: T. Man	Lagoon LOCATION ID: N Spoon, Driven DATE STARTED: 12 Mar., 1987 ks DATE COMPLETE: 12 Mar., 1987 BACKGROUND OVA: Set to 1.0 unit
DEPTH (FT)	DESCRIPTION
0 - 0.8	Dark brown silt, tar stained, w/granular fill having coatings of tar. OVA: 20-23 units. Sample: N-1-SS, 0 - 0.8 ft.
0.8 - 1.6	Dark brown-black, opaque white, bladed crystals, hard; tar stains throughout. OVA: 20 units.
1.6 - 2.0	Black tar, hard. OVA: 10-13 units. Sample: N-2-SS, 1.7 - 2.0 ft.
2.0 - 4.7	Black tar, soft to runny, some fill material. OVA: 3-12 units. Samples: N-3-SS, 2.9 - 3.4 ft; N-4-SS, 4.0 - 4.6 ft.
4.7 - 5.3	Dark brown silt and peat, abundant roots (MEADOW MAT). OVA: 2-4 units.
	TOTAL DEPTH: 5.3 ft.

SITE ID: East Lagor	LOCATION ID: O
METHOD: Split-Spoo	DATE STARTED: 13 Mar., 1987
FIELD REP: T. Marks	DATE COMPLETE: 13 Mar., 1987
WATER DEPTH: 0.8	PACKED ON THE COLUMN 1987
	BACKGROUND OVA: Set to 1.0 unit
DEPTH (FT)	DESCRIPTION
0 - 1.2	Gray silt, loose, w/some bladed crystals (white). OVA: 2 - 5 units.
	Samples: 0-1-SS, 0-1.0 ft; 0-FP-SS*, 0 - 1.0 ft.
1.2 - 2.4	Dark brown-black, bladed crystals, hard; trace silt, trace tar. OVA: 7-12 units.
	Sample: 0-2-SS, 1.6 - 2.3 ft.
2.4 - 5.4	Black tar, soft; trace wood fragments, trace silt. OVA: 2 - 4 units. Samples 0-3-SS, 3.0 - 3.9 ft; 0-4-SS, 4.8 - 5.3 ft.
5.4 - 6.0	Dark brown silt and peat, abundant roots (MEADOW MAT) OVA: 2 - 4 units.
·	TOTAL DEPTH: 6.0 ft.

^{*}Sample O-FP-SS, field performance sample collected under direction of DEP personnel. Assume conc. 2,3,7,8-TCDD=zero, spike at 1ppb.

Sheet 1 of 1

BORING LOG

SITE ID: East Lage	* · · · · · · · · · · · · · · · · · · ·
FIELD REP: T. Marks	
11 4 TO TO TO TO TO THE	D. CHARLES AND
	ft. BACKGROUND OVA: Set of 1.0 unit
DEPTH (FT)	DESCRIPTION
0 - 0.9	Tan, black, opaque, bladed crystals, interlocking, hard. OVA: to 20 units. Sample: P-1-SS, 0-0.8 ft.
0.9 - 1.3	Gray sand (f-m) w/some bladed crystals. OVA: 15 units.
1.3 - 1.8	Black tar, hard. OVA: 2 - 7 units. Sample: P-2-SS, 1.3 - 1.8 ft.
1.8 - 4.9	Black tar, soft, w/some granular material, trace wood fragments. OVA: 2 - 5 units. Samples: P-3-SS, 2.7 - 3.4 ft.; P-4-SS, 4.0 - 4.8 ft.
4.9 - 5.3	Dark brown peat and silt, w/abundant roots, trace sand (f), (MEADOW MAT). OVA: 2 - 3 units.
	TOTAL DEPTH: 5.3 ft.

Sheet 1 of 1

BORING LOG

FIELD REP: T. Marks	oon, Driven DATE STARTED: 11 Mar 1987
DEPTH (FT)	DESCRIPTION
0 - 2.2	Medium brown, opaque, bladed crystals, trace to some brown silt. OVA: to 25 units. Samples: Q-1-SS, 0.3 - 0.8 ft; Q-1p-SS, 0.3 - 0.8 ft.
2.2 - 2.6	Medium-dark brown, opaque crystals mixed w/black tar. OVA: 6-11 units. Samples: Q-2-SS, 2.2 - 2.6 ft; Q-2D-SS, 2.2 - 2.6 ft.
2.6 - 3.1	Dark brown - black tar and sand (f.). OVA: 2 - 6 units. Samples: Q-3-SS, 2.7 - 3.1 ft; Q-3D-SS, 2.7 - 3.1 ft.
3.1 - 5.3	Black tar, soft, w/some brown silt. OVA: 2 - 4 units. Samples: Q-4-SS, 4.0- 5.0 ft; Q-4D-SS, 4.0-5.0 ft.
5.3 - 6.5	Dark brown silt, w/abundant peat, some root fragments (MEADOW MAT). OVA: 2 - 4 units.
	TOTAL DEPTH: 6.5 ft.

Sheet	_1	οf	1
-------	----	----	---

SITE ID:East	Lagoon LOCATION ID: R
	Spoon, Driven DATE STARTED: 17 Mar., 1987
FIELD REP: T. Ma	DATE COMPLETE: 17 Mar., 1987
WATER DEPTH: 0.	6 ft. BACKGROUND OVA: Set to 1.0 unit
DEPTH (FT)	DESCRIPTION
0 - 0.9	Medium-dark brown opaque, bladed crystals. OVA: to 25 units. Sample: R-1-SS, 0-0.8 ft.
0.9 - 3.2	Medium - dark brown, black tar stained, bladed crystals, w/zones of clean, opaque white crystals, tar content increases w/depth. OVA: to 40 units. Sample: R-2-SS, 2.5-3.2 ft.
3.2 - 6.7	Black tar, soft, w/wood and brick fragments, other debris. OVA: 6 - 10 units. Samples: R-3-SS, 4.2 - 5.0 ft. R-4-SS, 6.0 - 6.7 ft.
6.7 - 7.2	Medium - dark brown silt w/peat, root fragments. (MEADOW MAT). OVA: 2 - 4 units.
	TOTAL DEPTH: 7.2 ft.

Sheet 1 of 1

BORING LOG

SITE ID: East Lagoon METHOD: Split-Spoon, Driven	LOCATION ID: S DATE STARTED: 16 Mar., 1987
FIELD REP: T. Marks	DATE COMPLETE: 17 Mar., 1987 BACKGROUND OVA: Set to 1.0 unit

DEPTH (FT) DESCRIPTION 0 - 2.6 Black, brown bladed crystals, trace silt. OVA: to 25 units. Samples: S-1-SS, 0.3 - 0.8 ft; S-2-SS, 1.8 - 2.6 ft. 2.6 - 4.2 Black tar, trace sand (f), very hard. OVA: slowly increased to 12 units. Sample: S-3-SS, 3.5 - 4.2 ft. TOTAL DEPTH: 4.2 ft.

NOTES: See text for location of boring.

Spoon refusal at 4.2 ft. No sample S-4-SS was collected. Refusal noted after 45 minutes driving w/no advancement.

Sheet	_ 0	£	1
-------	-----	---	---

	East Lagoon	LOCATION ID:	T
	lit-Spoon Driven	DATE STARTED:	13 Mar., 1987
FIELD REP:	T. Marks	DATE COMPLETE:	13 Mar., 1987
WATER DEPTH:	0.9 ft.	BACKGROUND OVA:	Set to 1.0 unit
DEPTH (FT)	DESCRIPTION		
0 - 1.5	Medium gray to b (f-m). OVA: to 20 unit Sample T-1-SS, p	- -	s, trace sand
1.5 - 3.2	- 3.2 Black tar, some sand (f), very hard. OVA: slowly increased to 10 units. Sample: T-2-SS, 2.5 - 3.2 ft.		
	TOTAL DEPTH: 3.	2 ft.	

NOTES: See text for location of boring.

Spoon refusal at 3.2 ft. No samples T-3-SS or T-4-SS were collected. Refusal noted after 70 minutes driving w/no advancement.

Sheet	_1_	of	1
-------	-----	----	---

	LOCATION ID: LP-1
METHOD: Split-Spoon, driven	DATE STARTED: 8 Aug., 1985
Dave Stein	DATE COMPLETED: 8 Aug., 1985
n/a	BACKGROUND HNU: Set to 0.0

DEPTH (FT)	DESCRIPTION
0 - 0.5	Brown gravelly silty sand. Sample: LP-1 (SCLP-7A), 0 - 0.5 ft.
0.5 - 1.5	Same as above.
1.5 - 2.5	Same as above. HNU: 10 ppm. Sample: SCLP-7B, 1.5 - 1.7 ft.
2.5 - 3.0	Black gravel.
3.0 - 4.5	Brown, white and black ash.
4.5 - 6.5	Same as 3.0 - 4.5. HNU: 2 - 5 ppm.
6.5 - 8.5	No recovery.
8.5 - 10.5	MEADOW MAT. Sample: 9.0 - 9.5.
	TOTAL DEPTH: 10.5 ft.

NOTES: Samples SCLP-7A, SCLP-7B submitted for TCDD analysis, Aug., 1985. Ground water encountered at approx. 3.0 ft.

Sheet	1	of	1

SITE ID: East Lagoon Perimeter	LOCATION ID: LP-2
METHOD: Split-Spoon, driven FIELD REP: Dave Stein	DATE STARTED: 8 Aug., 1985
WATER DEPTH: N/A	DATE COMPLETED: 8 Aug., 1985 BACKGROUND HNU: Set to 0.0
	Set to U.U

DEPTH (FT)	DESCRIPTION	
0.0 - 0.5	Gravelly silt grading into a dark brown-black slag with silt. Sample: SCLP-2A, 0.0 - 0.5 ft.	
0.5 - 2.4	Dark brown-black to gray cinders and silt (fill). HNU: $1-2$ ppm.	
4.1 - 4.5	Brown silty sand (fill). HNU: 1 - 2 ppm.	
4.5 - 6.5	Fill consisting of brick and silt. HNU: 2 ppm.	
6.5 - 7.5	Dark brown clayey silt.	
7.5 - 8.5	MEADOW MAT. Sample: 7.5 - 8.0 ft.	
8.5 - 10.0	No recovery.	
	TOTAL DEPTH: 10.0 ft.	

NOTES: Sample SCLP-2A submitted for TCDD anaylsis, Aug., 1985. Ground water encountered at approx. 1.0 ft.

Sheet	1	of	1
			_

SITE ID: <u>East Lagoon Perimeter</u>	LOCATION ID: LP-3
bave Stein	DATE STARTED: 9 Aug., 1985 DATE COMPLETED: 9 Aug., 1985
WATER DEPTH: N/A	BACKGROUND HNU: Set to 0.0

DEPTH (FT)	DESCRIPTION
0.0 - 0.5	Brown gravelly silty sand with chromite slag. HNU: 1 ppm. Sample: SCLP-3A, 0.0 - 0.5 ft.
0.5 - 2.0	Same as above, very friable and crumbly.
2.0 - 3.0	Same as above.
3.0 - 4.0	Black-gray coal-like material. HNU: 20 ppm.
4.0 - 6.0	Brown coal-like material with lenses of brick, ash, gravel and silt. HNU: 20 - 25 ppm. Sample: SCLP-3C, 3.5 - 4.0 ft.
6.0 - 7.7	Brown, gravelly silty sand and fill material. HNU: 2 - 3 ppm.
7.7 - 8.0	MEADOW MAT. Sample: 7.7 - 8.0 ft.
	TOTAL DEPTH: 8.0 ft.

NOTES: Samples SCLP-3A SCLP-3C submitted for TCDD analysis Aug., 1985. Ground water encountered at approx. 4.5 ft.

Shee	t	1	of	1

SITE ID: <u>East Lagoon Perimeter</u>	LOCATION ID: LP-4
FIELD KEP: Dave Stoin	DATE STARTED: 9 Aug., 1985 DATE COMPLETED: 9 Aug., 1985
WATER DEPTH: N/A	BACKGROUND HNU 0.0

DEPTH (FT)	DESCRIPTION		
0.0 - 0.5	Brown sandy gravel with brick and wood debris. Sample SCLP-4A, 0.0 - 0.5 ft.		
0.5 - 2.0	Brown silty sand mixed with black gravel. HNU: 5 - 7 ppm.		
2.0 - 4.0	Multi-layered, multicolored (lavender to gray)ash.		
4.0 - 6.0	Same as above.		
6.3 - 8.0	Same as above. Sample: LP-4, 6.0 - 6.5 ft.		
8.0 - 9.0	Green fine ash.		
9.0 - 10.0	MEADOW MAT.		
	TOTAL DEPTH: 10.0 ft.		

NOTES: Samples SCLP-4A, LP-4 submitted for TCDD analysis Aug., 1985.

Ground water encountered at approx. 7.0 ft.

Sheet	_1_	of	1
-------	-----	----	---

SITE ID: Western Lagoon Perimeter	LOCATION ID: LP-5
FIELD REP: Dave Stein	DATE STARTED: 9 Aug., 1985 DATE COMPLETED: 9 Aug., 1985
WATER DEPTH: N/A	BACKGROUND: 0.0

DEPTH (FT)	DESCRIPTION
0.0 - 0.5	Sandy gravel with chromite slag. Sample: SCLP-5A, 0.0 - 0.5 ft.
0.5 - 2.0	Same as above, very friable.
2.0 - 4.0	Dark brown to light orange silty sand with gray ash near 4.0 ft. HNU: 0.5 - 4 ppm.
4.0 - 6.0	Same as above. Sample: SCLP-5D, 3.6 - 4.1 ft.
6.0 - 10.5	Gray ash material. Sample: 10.0 - 10.5ft.
10.5 - 11.0	MEADOW MAT.
·	TOTAL DEPTH: 11.0 ft.

NOTES: Samples SCLP-5A, SCLP-5D submitted for TCDD analysis Aug., 1985.

Ground water encountered at approx. 4.6 ft.

Sheet	1	of	1
-------	---	----	---

SITE ID: Western Lagoon Perimeter	LOCATION ID:	LP-6
METHOD: Split-Spoon, driven	DATE STARTED:	10 Aug., 1985
FIELD REP: Dave Stein		10 Aug., 1985
WATER DEPTH: N/A	BACKGROUND HNU:	0.0
		_

DEPTH (FT)	DESCRIPTION
0.0 - 0.5	Brown sandy, silty gravel with chromite slag. Sample: SCLP-6A, 0.0 - 0.5 ft.
0.5 - 2.0	Brown silty gravel, chromite slag, very friable. Sample: SCLP-6B, 1.8 - 2.2 ft.
2.0 - 4.0	Red, fine silty clay, fairly messive.
4.0 - 6.0	Brown, wet silty, clayey gravel grading into a black coal ash.
6.0 - 9.5	Same as above with red brick fragments, sandier with some silt.
	Sample: 8.9 - 9.5 ft.
9.5 - 10.0	MEADOW MAT.
	TOTAL DEPTH: 10.0 ft.

NOTES: Samples SCLP-6A, SCLP-6B submitted for TCDD analysis Aug., 1985. Ground water encountered at approx. 2.7 ft.

Sheet	1	of	1

	een East & West LOCATION ID: LP-7
METHOD: Split-Spoon FIELD REP: Dave Stein	
TOTAL DECIMA	DATE COMPLETED: 10 Aug., 1985
WATER DEPTH: N/A	BACKGROUND HNU: 0.0
DEPTH (FT)	DESCRIPTION
	DESCRIPTION
0.0 - 0.5	Black, metallic-looking material.
	Sample: SCLP-7A, 0.0 - 0.5 ft.
0.5.1.6	
0.5 - 1.6	Black, tar-like, viscous material.
1.6 - 4.0	
1.0 - 4.0	Brown, silty sandy gravel with specks of white
	crystalline material.
	Sample SCLP-7B, 1.7 - 2.1 ft.
4.0 - 5.5	Brown gilty goods aread
	Brown silty sandy gravel, wet.
	HNU: 3 - 5 ppm.

Brown sandy gravel with black ooze near 8.5 ft.

Sample: 8.5 - 9.0 ft. - HNU: 10 - 15 ppm.

TOTAL DEPTH: 9.5 ft.

MEADOW MAT.

5.5 - 8.0

8.0 - 9.0

9.0 - 9.5

NOTES: Samples SCLP-7A, SCLP-7B submitted for TCDD analysis, Aug., 1985. Ground water encountered at approx. 2.6 ft.

Black organic layer. HNU: 7 - 10 ppm.

HNU: 20 - 25 ppm.

March 2008

ROY F. WESTON, INC. REMEDIAL INVESTIGATION (1991-1992)

Project <u>STANDARD CHLORINE</u>
Location <u>KEARNY, NJ</u>
Geologist <u>W. Brew</u>
Drilling Contractor <u>J.C. Anderson</u>
Oriller <u>J. Burrell</u>
Drilling Method <u>Hollow stem auger</u>
Diameter of Borehole <u>6 inches</u>

Boring Number SB-1

Total Borehole Depth 4 feet

Date Started 10/7/92

Date Boring Completed 10/7/92

DEPTH IN FEET	LAB	SAMPLE INTERVAL	BLON	X RECOVERY	GRAPHIC Synbol	HAU/DVA READINGS	DESCRIPTION
-0					XXXX		0-1' Augered
-2		\bigvee	13-15	50	XXXX XXXX XXXX XXXX XXXX XXXX XXXX	,	1-2' Black bituminus fill material. 2-2.8' Red brick, broken
		\bigvee	15-18 50/1		XXXX		3-4' No recovery.
-4		\triangle	50/1	0	XXXX XXXX XXXX XXXX		-
-6							
-8							
-10							
-12				Ì			-

Project STANDARD CHLORINE
Location <u>KEARNY</u> , NJ
Geologist <u>W. Brew</u>
Drilling Contractor <u>J.C. Anderson</u>
Oriller <u>J. Burrell</u>
Drilling Method <u>Hollow stem auger</u>
Diameter of Borehole <u>6 inches</u>

Boring Number SB-2

Total Borehole Depth 17 feet

Date Started 10/7/92

Date Boring Completed 10/7/92

DEPTH IN FEET	LAB SAMPLE	SAKPLE Interval	BLON	RECOVERY	GRAPHIC Synbol	HNU/DYA READINGS	DESCRIPTION
-0					XXXX XXXX XXXX XXXX		0-1' Augered.
		\bigvee	5-10		XXXX XXXX XXXX XXXX XXXX		1-2.4' Black bituminus type fill, silty, pieces of brick damp.
2		\bigwedge	15-16	70	XXXX (XXXX XXXX (XXXX XXXX		
-4		\bigvee	11-13		XXXXX XXXXX XXXXX XXXXX XXXXX		3-4' Same as above with wood, wet at 4.8'
-		\triangle	15-11		XXXX XXXX XXXX XXXX		5-6.7° Same as above.
-6		\bigvee	4-5		XXXX (XXXX (XXXX XXXX		6.7' Green gray f to m SAND, trace f gravel
		$\left\langle \cdot \right\rangle$	8-4		XXXX XXXX		8.3' Marsh mat, brown peat, moist.
-8		X	1-1	40			
_		<u>/ </u>	1-1				9' Same as above.
-10		X	1-1	25		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
			4-4	во			11-12.6' Green gray f sand w/silt, wet. 12.6-12.8' Green gray CLAY
-12							

(Page 2 of 2)

149	ge a	of of	2)				<u>DURLING LUG</u>					
PRO	JECT	- <u>s</u>	TANDA	RD CH	(LORI	NE	BORING NUMBER SB-2					
DEPTH IN FEET	LAB SAMPLE	SAMPLE INTERVAL	BLOW	RECOVERY	GRAPHIC SYKBOL	HNU/DVA READINGS	DESCRIPTION					
-12		X	5-7	В0		-						
-14			2-2 5-9	30			Same as 11-12.6' above.					
-16 -		\bigvee	2-4	100			product. 16.2' Green gray CLAY					
-18							-					
-20							-					
-22							- -					
-24							_					
-26												
-28												

Project STANDARD CHLORINE
Location <u>KEARNY</u> , NJ
Geologist <u>W. Brew</u>
Drilling Contractor <u>J.C. Anderson</u>
Driller <u>J. Burrell</u>
Drilling Method <u>Hollow stem auger</u>
Diameter of Borehole <u>6 inches</u>

Boring Number SB-3

Total Borehole Depth 17 feet

Date Started 10/6/92

Date Boring Completed 10/6/92

	,			,		<i>'</i>	
DEPTH IN FEET	LAB	SAKPLE INTERVAL	BLOK COUNT	RECOVERY	GRAPHIC Synbol	HNU/OVA READINGS	DESCRIPTION
-0							0-1' 0-8" asphalt 8-10" membrane 10" coarse gravel
-2		\bigvee	3-4 5-7	15	XXXX XXXX XXXX XXXX XXXX XXXX XXXX		Black-red fill, silt w/ clay and gravel, wet.
- -4		$\left\langle \cdot \right\rangle$	5-6	50	XXXX XXXX XXXX XXXX XXXX XXXX XXXX		Dark red c sand, fill, wet, with silt, cobble at end of spoon.
- -6		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	7-6 6-8		XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX		Same as above to 6.8'. 6.8' Same color change to black, stained.
		\bigwedge	13-13		XXXX XXXX XXXX XXXX XXXX XXXX XXXX		Marsh mat at 8.8° peaty, moist.
-8		\bigvee	1-2	20	XXXX XXXXX XXXXX XXXXX XXXXX		10.6' Green gray f SAND, end of spoon
-10			1-2	45			green gray CLAY.
- -12			3-5	0			No recovery.
	1		-				

(Pa	age i	2 Df	2)				BURING LUG					
PRO)JEC	т <u>.</u> S	TANDA	RD CH	LORI	NE	BORING NUMBER SB-3					
DEPTH IN FEET	LAB	SAMPLE	BLOW COUNT	X RECOVERY	GRAPHIC SYNBOL	HNU/OYA READINGS	DESCRIPTION					
-12		X		0			Black red CLAY at 14.5°.					
-14		\bigvee	4-5 7-6	60			BIBER PED CEAT BE 14.5					
-16			5-7	100			Green gray f grained SAND with silt to 16.9' Green gray CLAY at 17'.					
-18												
-20			-									
-22												
-24				,			-					
-26												
-28												

Project STANDARD CHLORINE										
Location <u>KEARNY</u> , NJ										
Geologist <u>W. Brew</u>										
Drilling Contractor <u>J.C. Anderson</u>										
Driller <u>J. Burrell</u>										
Drilling Method <u>Hollow stem auger</u>										
Diameter of Borehole _6 inches										

Boring Number SB-4

Total Borehole Depth 17 feet

Date Started 10/6/92

Date Boring Completed 10/6/92

	·						
DEPTH IN FEET	LAB LAB SAMPLE	SARPLE INTERVAL	BLOH	X RECOVERY	GRAPHIC Symbol	HNU/DVA READINGS	DESCRIPTION
-0					XXXX XXXX (XXXX		Augered
-2		\bigvee	8-10	60	(XXXX) XXXX (XXXX) XXXX (XXXX)		Brown f to m SAND w/trace silt, stained black, wet. 2" layer of silty clay (2.6-2.8')
_		$\left\langle \cdot \right\rangle$	12-7		XXXX XXXX XXXX XXXX XXXX		Fill, gray green c SAND and silt w/trace f gravel, damp.
-4		X	2-5 6-6	20 .			i Al.east' nemb'
· -			2-1		(XXXX) XXXXX (XXXX) XXXXX (XXXX) XXXXX		Same as above to 6.7'. 6.7' Marsh mat, peat, damp.
- 6			1-1	30	XXXX XXXX XXXX XXXX		No recovery.
8		\bigvee	1-1	0			
_		$\left\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1-1				10.2' Black gray f SAND and silt, saturated.
-10		X	2-4	45			-
- -12		X	4-9	100			Same as above to 11.3' 11.3-12.3' Black green silty CLAY, damp, 12.3 Brown f SAND w/some m SAND and trace silt, saturated.
16							

) JEC		TANDA	.RD CI	HLORI	NE	BORING NUMBER SB-4				
		,			,	, 	<u> </u>	BONTING NOMBER 20 4				
	DEPTH IN FEET	SAMPLE	SAMPLE INTERVAL	BLDM	RECOVERY	GRAPHIC SYMBOL	HNU/DVA READINGS	DESCRIPTION				
	-12							_				
			X	16-13	100							
Ī	-			6-5				Same as 12.3' above.				
	-14		XI		100			_				
	-		/	01-8				Same as above to 15 3'				
			$\backslash / \! $	5-6				Same as above to 15.3'. 15.3' Brown gray CLAY with silt, wet.				
	-16		M	7-5	80							
-		f	' 									
-	-18											
-	-20											
L								·				
-	-22		-									
-												
	-24											
-												
	26							-				
	28											

OVERBURDEN WELL

1	Jacc												
ł				(, NJ									
į.	_									. Top of Casing Elevation <u>8.54 feet</u>			
Dri	illing	Con	tract	יסר של	<u>.C.</u>	Ande	erso	n		Groundsurface Elevation <u>6.18 feet</u>			
Dri	ller	مل_	n Urt	an					Total Borehole Depth 21 feet				
Dri	Drilling Method Hollow stem auger									. Total Well Depth 21 feet			
Dia	Diameter of Borehole 12 inches									Date Started <u>11/30/90</u>			
Dia	meter	۵f	Well	Casing		1 inc		Date Well Completed 11/30/90					
DEPTH IN FEET	WELL	CONST	RUCTIO	N DETAIL	138881	BLOW	RECOVERY	SARBIC	HENOW!	DESCRIPTION			
		T	7				: !						
-о	-, <u></u>	0.0	4	1	1			-[:]-[:]		0-2' 03' silt (5YR3/4) dry, soft. .36' Black asphalt type material.			
		0.0	Q (M					sand size with gravel chunks. .6-1.5' silty sand (5R3/4) fine			
-		0.0	9		IVI		71			grained, mottled, dry, some black mottling.			
		0	0		M				·				
		<u>ه</u> و	°.a		VV								
-2		0.0	9		H			0.0		2-4' Water at 3.5' Sand, (5YR3/2) brown-gray, fine to			
		9 0	0		M			0.0	000	medium, some pebbles.			
		0.0	9		V		100	0.00					
	<u> </u>	0.0	0.0		I۸I		100	ွင့်					
	-	9.0	6 6 6		V			000					
-4		φ.	0	7	\square			00.0		4-6' Sand and gravel, brown-gray, green			
		0 0	9.8	sea)	NA			000		pockets of chrome fill.			
		9.0	9 0	grout	M			0.0					
-		0	0.5	Š	X		50	00					
		0	٥	l	M			000		·			
		<u>م</u>	٥		VV			000					
-6		9.1	0.0		H			00		5-8' Same - green coated sandy grains.			
	i	0.0	0		$\Lambda \Lambda$			000					
		0.9	0.0		IVI			0.0	}				
		9.6	0.0		\mathbb{I}		50	000					
		0.G	5 G					000					
- 8		90.0	0.0	İ				600		8-10' Same.			
		0	0		M			0,0		o to some.			
		0.6	9 0		X		50	000					
-		9.1	0.1		H			0.0		\\			
L	<u> </u>				11		L	1	<u> </u>	1			

Project STANDARD CHLORINE Well Number MW-1L

OVERBURDEN WELL

	07.440.450 CH 00				OVERIDONDEN VILLE			
PRO	JECT STANDARD CHLOR						WELL	NUMBER MW-1L
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	1.Pillipse.	BLOW COUNT	RECOVERY	BARNIC BARNIC	\$3,9%		DESCRIPTION
-9					.0			-
	a a a	M		50	00			
		\square					10-12'	40.40.71
	1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					10-12	10-10.3' caving, silt, grass roots. 10.3-10.5' black sand. 10.5-12' marsh mat, organic layer,
	orout	M					· .	sulfur smell.
-11	4 6	IXI		100				-
	0 0							
<u> </u>		Ц					12-14	12-13.2' meadow mat.
	100	M			8			13.2-13.75' fine grained sand, (10YR4/2) brown-gray, 20-30% clay,
4.0		M						fairly plastic.
-13	anit and a second	$ \lambda $		6 8				-
	+ bentonite seal →	\mathbb{N}						
-	99+	Н					14-16'	14-14.5° caving.
		M						14.5-16' sand, (5YA2/2) dark brown-gray 14.5-15' clayey sand, 20% clay.
-15		W		100				15-16' grades to medium to coarse sand, well sorted, subrounded grains.
		$ \Lambda $		100				7
		\mathbb{N}						
-	★	H	ŀ				16-1B°	Sand as above, at 16.7-17' thick
		NA						lense clayey sand.
-17		W						
	eel scree	$ \Lambda $		100				_
	\$ 16 S	\mathbb{N}					•	
-	stee.	H					18-20'	Beach sand as above; bottom 6*
.	stainless steel	M						gray clay, dry, stiff, silty.
-19	Zura Z	M		100				
		$ \Lambda $,
	s Jot	VV	-				 	
- 1	95	H	}				20-21	Sand, not representative due to
		ΙXΙ						running sands.
_21		\mathbb{N}				ļ		
			Ī	-				

OVERBURDEN WELL

Pro	ject <u>ST</u>	ANDARD CHLO	RINE	Well Number MM-SL							
Loc	ation _K	EARNY. NJ				····	Coordinates <u>E602927.72. N698010.82</u>				
Gec	ologist _	Celia Green	man				Top of Casing Elevation 7.36 feet				
Dri	illing Con	tractor	.C. And	erso	חו						
tra	<u>ا0ل</u> 11er	n Urban		Total Borehole D	Depth <u>19</u>	feet					
Dri	illing Met	hod <u>Hollo</u>	w stem	Total Well Depth	19 fee	t					
Dia	meter of	Borehole _	12 inct	Date Started _1	12/7/90						
Dia	ameter of	Well Casing	<u>4 ir</u>	Date Well Comple	eted <u>12</u> /	7/90					
DEPTH IN FEET	WELL CONST	RUCTION DETAIL	E BLOW	DE	ESCRIPTION						
	F	7					•				
-	4.00.000000000000000000000000000000000	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		75		1	-2' 0~.3' brown re .39' black a: .9-1.4' brown : 1.4-1.5' quart:	sphalt mat silt (5YR3	erial; dry. /4); dry.		
_2	*a, o g d d a a o g d a a a a a a a a a a a a a a a a a a	/		65		1		sandy sil 5Y85/2):dr rown silt	t, very fine y. (10YR4/6); dry.		
-	00.000000000000000000000000000000000000	orani see		65		1	-6' 4-4.5' brown ro to above. 4.5-5.3' CLAY, clasts of black pebbles, stiff	brown (5Y k organic	R3/4), dry, material and		
6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0000000000000000000000000000000000000		65		1	-8' brown CLAY as a	above, dry	•		
-8	0.0.00	0 0 0			A CONTRACTOR OF THE CONTRACTOR	10	-10 Meadow mat, w Analytical sa		3.		

	ge 2 of 2)							:
PR0	JECT STANDARD CHLOR	INE			7		WELL NUMBER _	MM-5L
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	1.PHINE.	BLOW	яесойеят	BWBMc BWBMc	\$13/9X#	•	DESCRIPTION
-9	6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X			A Commission of the Commission	10		_
_ 11	- Dentonite seal - grout seal -			100		2	pebbles, 10.5-11.1 11.2-11. very pla	2° meadow mat. 7° brown clay (5YA2/2), stic. green CLAY (5G5/1), very
-13	- Dentonite			65		B≭s	12.25-12 somewhat 12.8-13.	' caving. .B' green CLAY, moist, stiff (1066/2). 3' SAND, green (1066/2), medium grained, 10% clay,
-15	/ screen ———————————————————————————————————			100		20-50	olive, (14.5-16' grades f grained	fine grained SAND, 10% clay, 5Y5/6}, well sorted. SAND, brown gray (5YR4/1), rom medium at top to coarse at bottom, fairly well subangular grains; moist.
							15-18' 16-17' s 17-18' C	and as above; moist. LAY, gray (N-5), stiff, dry.
17	10 slot stainless	\mathbb{N}	_	-100		20-50		·
<u> </u>	0 1							
-19								-
-								
-21								

Project STANDARD CHLORINE
Location <u>KEARNY</u> , NJ
Geologist <u>Celia Greenman</u>
Drilling Contractor <u>J.C. Anderson</u>
Driller <u>Jon Urban</u>
Drilling Method <u>Hollow stem auger</u>
Diameter of Borehole 12 inches
Diameter of Well Casing 4 inches
w= n on E 12 5%

Well Number MW-3L

Coordinates E602725.51. N697722.83

Top of Casing Elevation 5.29 feet

Groundsurface Elevation 3.36 feet

Total Borehole Depth 18 feet

Total Well Depth 18 feet

Date Started 11/30/90

Date Well Completed 12/3/90

DEPTH IN FEET	WELL CONST	RUCTION DETAIL		SLOW >	RECOVER		#W8%		DESCRIPTION
o	Q. 50 0 0 Q. 50 0 0	0.0000000000000000000000000000000000000				00000000		0-5,	D3' sandy silt (5YR3/4) brown gray. bottom inch is asphaltic37' brick material. Water at 1.8'7-1.2' sand with some gravel (10YR2/2) moist, fine to medium sand.
_2	4 9 9 6 9 9 9 9 5 5 6 9 9 9 5 5 6 9 8 9 9 5 5 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	310,000 0310,000			75			2-4'	Gravel and sand fill, gravel up to 2°diameter, (10YA2/2) brown-gray, some brick material and white crystals.
-4	6 10 0 0 6 8 10 0 0 0 0 0	5 0 2 0 10 10 5 0 4 0 10 10 10 10 10 10 10 10 10 10 10 10 1						4-6'	4-5.25' sand, brown gray, coarse, well sorted, wet. 4.25-5.5' gravel, 2" diameter.
-6	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	400000000000000000000000000000000000000			75	0000000		6-8'	6-7' chrome fill and caving, large chunks gravel and coarse sand (5YR2/2) 7-7.5' meadow mat.
-8	8 4 0 7 5 6 9 0 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	0.0000000000000000000000000000000000000	X		50			8-10	' 8-8.75' caving - chrome fill as above. 8.75-9' meadow mat.

	JECT STANDARD CHLOR	INE				WELL NUMBER MW-3L
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	1 .1	RECOVERY	SWANC SWANC	8 8,79,3#	DESCRIPTION
-9	ed ed					-
.			50	An and the second		10-12' 10-10.3' caving, chrome fill.
-11	- Dentonite seal	\bigvee	33			10.3-10.7° dark greenish gray CLAY, (5GY4/1), plastic.
-13			100			12-14' 122' caving. 12.2-14' sand, green-gray (5GY2/1), medium to coarse, well sorted, top 12" 20-30% clay, 1/2" thick green clay stringer at 2°.
- -15	ss steel screen———————————————————————————————————		100			14-16' 14-15.25' sand, green-gray (5GY2/1), coarse to very coarse, strong moth ball smell. 15.25-16' clay, stiff. green-gray (5GY2/1), strong moth ball smell.
	stoinle 				and the control of	
-17	— 10 s10t					
-						
-19						
_	÷		No. of the Additional Control of the Additio			
-21						

and the second s

Dismeter of Well Casing 4 inches Date Well Completed 12/11/90 DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION 0-2' Silt, gravel 15%, visible slag piaces. dry, brown (SYR2/2). 2-4' 2-3.5' Silt, 10% sand, fine grained, dull preen mineral throughout, white creamy pocket at 2.5', wet, pray (SGY6/1). 30 865 2-4' 2-3.5' Silt, 10% sand, fine grained, dull preen mineral throughout, white creamy pocket at 2.5', wet, pray (SGY6/1). 3.5-4' sand and 15% gravel, fine grained sand, 1/2' gravel, green mineral, wet, gray (SGY8/1). 4-5' 4-4.5' silt and gravel, 15% rounded gravel pellets, possibly from mineral wet, gray (SGY8/1). 4-6' 4-4.5' silt and gravel, 15% rounded gravel pellets, possibly from mineral wet, gray (SGY8/1). 4-6' 4-4.5' silt as above with green mineral, wet, gray (SGY8/1). 8-8' Silt as above with green mineral, gray (SGY8/1), wet.	Project STANDARD (Location KEARNY, 1 Geologist Celia Gr Drilling Contractor Driller Jon Urban Drilling Method Ho	J.C. Anders ollow stem auc	Coordinates <u>E603527.45</u> . N697967.15 Top of Casing Elevation <u>7.28 feet</u> Groundsurface Elevation <u>5.19 feet</u> Total Borehole Depth <u>20 feet</u> Total Well Depth <u>18 feet</u> Date Started <u>12/11/90</u>	
0-2' Silt, gravel isk, visible slag pieces. dry, brown (SYA2/2). 2-4' 2-3.5' Silt, 10% sand, fine grained, dull green mineral throughout, white creamy pocket at 2.5', wet, gray (SSYS/1). 3.5-4' sand and isk gravel, fine grained sand, 1/2' gravel, green mineral, wet, gray (SSYS/1). 4-6' 4-4.5' silt and gravel, i5% rounded gravel pellets, possibly from surface, specks of creamy coating, wet, gray (SSYS/1). 6-8' Silt as above with green mineral, gray (SSYS/1), wet. 8xs 6-8' Silt as above with green mineral, gray (SSYS/1), wet.	<u> </u>			
wet, gray (56Y6/1). 4.5-6' silt, green mineral throughout, wet, gray (56Y6/1). 6-8' Silt as above with green mineral, gray (56Y6/1), wet. 100 Ext. 8x6 6-8' Silt as above with green mineral, gray (56Y6/1), wet. 8x6 6-8' Silt as above, 5x gravel, green mineral, moist, gray (56Y6/1).	11 M	30		dry, brown (5YA2/2). 2-4' 2-3.5' Silt, 10% sand, fine grained, dull green mineral throughout, white creamy pocket at 2.5', wet, gray (5GY6/1). 3.5-4' sand and 15% gravel, fine grained sand, 1/2" gravel, green mineral, wet, gray (5GY6/1). 4-6' 4-4.5' silt and gravel, 15% rounded grayel pellets, possibly from
	On On One of the second	10		surface, specks of creamy coating, wet, gray (5GY6/1). 4.5-6' silt, green mineral throughout, wet, gray (5GY6/1). 6-8' Silt as above with green mineral, gray (5GY6/1), wet. 8-10' 8-9.8' silt, as above, 5% gravel, green mineral, moist, gray (5GY6/1).

(1-8	ige 2 of 2)					UVLINDUNDLI	A BALTT
PRO	JECT STANDARD CHLOR	INE		·	····	WELL NUMBER MW-4L	
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	IN SOUN	necoven.	SIMBIC.	#X7/67/8	DESCRIPTION	
-9			-				-
		\mathbb{N}	100		BK6	Transfer of the second	
-11	- Dentonite seal		50	250 mm 2 m	8x6	10-12' 10-10.5' caving, gray green mineral, wet. 10.5-10.7' meadow mat 10.7-11' sand, fine grand moist, brown (5YR3/2)	rained, 10% clav.
-		H	-			12-14' 12-13.3' caving, sand and meadow mat.	and gravel fill
-13		\bigvee	100		BKG	13.3-14' sand, fine gr fine grained; green c: stringer 13.3-13.6', r gray (5Y6/1).	lay(clayey sand)
-15			75		BK 6	14-16' 14-14.4' caving. 14.4-15' sand, fine to grained, well sorted m subangular, moist, app gray (N-2). 15-15.5' sand, fine gr sorted, quartz, moist,	nostly quartz, lears stained rained, well
-17			100		BKS	16-18' 16-17.3' caving. 17.3-18' sand, fine to Well sorted, strong oc (5YR6/1).	medium grained, or, moist, gray
-19	<u> </u>		100		BX6	IB-20° 1B-1B.6° caving. 1B.6-20° clay, slightl stiff, top 2° contains shale, moist, gray (N-	chunks of red
-21	•						-

	396 2 01 67								
Pro	Project <u>STANDARD CHLORINE</u>								11 Number <u>MW-5L</u>
Loc	Location KEARNY, NJ								ordinates <u>E602923.55. N698260.23</u>
Ged	Geologist <u>Celia Greenman</u>								p of Casing Elevation <u>6.14 feet</u>
Dr:	illing Cont	tractor <u>J</u>	.c.	And	ersc	חו		Gr	oundsurface Elevation <u>3.71 feet</u>
Dri	111er <u>Jor</u>	n Urban						Τɒ	tal Borehole Depth <u>17 feet</u>
Dri	illing Meth	nod <u>Hollo</u>	w s	tem	auge	<u>r</u>		To	tal Well Depth <u>17 feet</u>
	-								te Started <u>12/3/90</u>
									te Well Completed <u>12/4/90</u>
	I		Т.	Τ				Γ΄	
DEPTH IN FEET	WELL CONSTR	RUCTION DETAIL	1.20 MIN	BLOW	несомен	SWEETE	EW SW		DESCRIPTION
	-	7							
-0		29 1				000		0-5,	Very resistant, augered through.
	9 0	0.4				000			
	2 2	0 a				000			
	100					000			
						000			
-2	a					000		2-4'	2-2.7' gravel slag fill.
	0		1			000			2.7-2.8 black asphalt material. 2.8-3.25 sandy fill with pockets of
	4		W			000			yellow silt. Water at 3 feet.
F	a o b	5883	X		63	o လ			
		8 3	$\!$			000			
4	9.00	grout	1			000			
-4	0	000				0		4-6'	4-4.5' black sandy gravel fill, wet. 4.5-6' sandy clay, green gray (5GY6/1)
	à • a	• 4	\mathbb{N}			000			moist, plastic, 10% sand, green is mottled.
	٥		V		100	000			mottles.
	9		۱٨		100	000			
	• <i>a</i>	a	//			000			
-6	0.0	9						6-8'	Some sandy gravel fill and wood chunks.
}	6	9	1			\circ			Possible beginning of mat.
		6	W			000			
-		日本	IX		33			r4./?=	
		§ .				en en en en		₹ 1. : "	
		33	$V \setminus$						
− B		nite.	(B-10'	No recovery, chunk of wood stuck.
		into	ĮΥ		0	A PARTY IN THE PAR			
		← bentonite seal →	\mathbb{N}						
	<i>ν.α</i>	<u></u>	Г			245			

(Page 2 of 2)

(F8	ge 2 of 2)		,				<u> LIIBOIIBEIT MEEE</u>
PRO	JECT STANDARD CHLOR	INE				WELL !	NUMBER MW-5L
DEPTH IN FEET	NELL CONSTRUCTION DETAIL		REGINERAL MO	SWEDE	% 1% 3		DESCRIPTION
-9		M	0				-
_11			63				10-10.1' meadow mat. 10.1-10.3' clay. 10.3-11.25' clayey sand, fine to medium grain, brown gray (5YR4/1) 20-30% sand, black staining on sand.
-13	screen ———		50			12-14	Sand as above, 10% clay.
_ _15	10 slot stainless steel screen	\bigvee	-42			1	14-14.5° coarse sand, no clay, brown- gray (5YR4/1). 14.5-14.8° clay, gray.
_17	or ———					16-17	Clay.
-19							
-21							

Loc Gec Ori Ori Ori	cation KEARNY, NJ cologist Celia Green cologist Cel	man I.C. Ander w stem au 12 inches	Well Number MW-6L Coordinates E603531.37. N698540.14 Top of Casing Elevation 6.82 feet Groundsurface Elevation 4.19 feet Total Borehole Depth 16 feet Total Well Depth 16 feet Date Started 12/5/90 Date Well Completed 12/5/90		
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	BLOW .	RECOVERY SPARIC	EWOW.	DESCRIPTION
_0 0	a, 6, 6, 6, 3, 10, 6, 6, 5, 3, 10 a, 6, 6, 6, 3, 10, 6, 6, 5, 3, 10 a, 6, 6, 6, 3, 10, 6, 6, 5, 3, 10	7	75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BK6.	0-2' Slag. sand and gravel, gray, black water at .5', (5YR2/1).
_4	orout seal	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BK6	2-4' 2-2.8' slag as above. 2.8-4' sandy clay, 40% sand, fine grained, clay, (5GY7/4), green.
-		14	8 8	BKG	4-6' 4-4.9' sand and gravel fill. 4.9-5.1' sandy clay as above. 5.1-6' gravel and sand fill, black
— Б	+ 1888 93	3	000 000 000 000 000	BKS	5-8' Gravel and sand fill as above, meadow mat in tip of spoon.
-B	- pentonite sesi	1"	00	8x6	8-10' 8-8.3' gravel and sand, slag, caving. 8.3-8.9' meadow mat, stained black. 8.9-9.3' silty clay, wet, plastic. (5Y4/1), gray.

(Page 2 Df 2)					OTENBONDEN NEEL
PROJECT STANDARD CHLOR	INE				WELL NUMBER _MW-6L
DEPTH NELL CONSTRUCTION DETAIL	BLOWT BLOWT	песовеня	SWEDIC	\$%3% 3 4	DESCRIPTION
<u> </u>	M	100		8XG	9.3-9.6' clayey sand, gray, (5Y4/1), fine grained sand, 40% clay. 9.6-9.8' silty clay as above 9.8-10' clayey sand, as above.
-11		25		8 KS	10-12° Fine grained sand, 20% clay, 2° pebble at bottom prevented recovery, sand dark gray (5YR2/1).
1		100		BKG ···	12-14° 12-12.4° caving. 12.4-14° dark gray fine to medium grained sand N-4, N-3.
10 stot stainless		100		20	14-16' 14-14.75' caving. 14.75-15.75' fine grained sand. as above, strong odor. 15.75-16' clay, gray (5YR4/1), stiff, hard.
-17					_
-19					_
-					
-21					. ·

(Page 1 of 2)

Project STANDARD CHLORINE	Well Number MN-7L
	Coordinates <u>E603657.55</u> . N698602.08
Location <u>KEABNY</u> , NJ	
Geologist <u>Celia Greenman</u>	Top of Casing Elevation <u>6.90 feet</u>
Drilling Contractor <u>J.C. Anderson</u>	Groundsurface Elevation 4.26 feet
Driller <u>Jon Urban</u>	Total Borehole Depth <u>16 feet</u>
	Total Well Depth 16 feet
Drilling Method <u>Hollow stem auger</u>	
Diameter of Borehole <u>12 inches</u>	Date Started <u>12/11/90</u>
Diameter of Well Casing 4 inches	Date Well Completed 12/12/90
PTH NELL CONSTRUCTION DETAIL ECOUNT E E	DESCRIPTION
FEET TELE CONTINUE	

DEPTH IN FEET	NELL CONSTRUCTION DETAIL	BPONT BPONT	RECOVERY	SWANC	\$1,0%	DESCRIPTION
_o	4 5 5 5 5 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6		50		H/A	0-2' 04' silt, moist, brown (5YR3/2)47' silt and gravel, 40% gravel fill, moist, brown (5YR3/2)7-1' gravel fill, >1/2' gravel, wet, gray (N-6).
-2	11 10 10 10 10 10 10 10		20		H/A	2-4' 2-2.4' gravel fill with silt, water very high in hole (within 3"), wet, brown (5YR3/4).
-4	Goldfes Goldfes		. 50		H/A	4-6' 4-4.3' gravel fill, wet, brown (5YR3/4). 4.3-5' meadow mat, strong odor and wicked looking fluid, gray (N-2).
-6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			NAME OF TAXABLE PARTY OF TAXABLE PARTY.		6-8' Meadow mat as above, wet.
-8	+	M	50	e de destacto de la companya de la c	80	8-10' 8-8.7' meadow mat as above. 8.7-9' sand, fine grained. well sorted, 15% clay, moist, gray (5G6/i).

PRO	OJECT STANDARD CHLOR	INE				WELL NUMBER MW-7L
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	BLOW COUNT	RECOVERY	gwar.	HEWST.	DESCRIPTION
-9	te seal	M	50	AND THE RESERVE	80	
-11	n — — — — — — — — — — — — — — — — — — —		6 5		60	10-12' 10-10.3' caving, meadow mat. 10.3-11.7' sand, fine grained, well sorted, 10% clay, clay layer and black staining at 10.6-10.7', strong odor, moist, gray (566/1).
-13	inless steel screen		100		75	12-14' 12-12.5' caving. 12.5-14' sand, fine grained, well sorted, no clay, strong odor, stained brown in places, moist, gray (N-5).
-15			100		120	14-15' 14-14.5' caving. 14.5-15.6' sand, fine grained as above, strong odor and staining, moist, gray (5YA4/1). 15.6-16' clay, stiff, moist, gray (N-4).
						HNU readings on bottled samples
-17						
-19						
-21						

Diameter of Well Casing 4 inches	Date Well Completed 12/5/90
Diameter of Borehole 12 inches	Date Started <u>12/5/90</u>
Drilling Method Hollow stem auger	Total Well Depth 19 feet
Driller <u>Jon Urban</u>	Total Borehole Depth <u>19 feet</u>
Drilling Contractor <u>J.C. Anderson</u>	•
-	
Geologist <u>Celia Greenman</u>	Top of Casing Elevation 8.58 feet
Location <u>KEARNY</u> , NJ	Coordinates <u>E603960.19</u> , N698755.40
Project Standard Chechine	
Project STANDARD CHLORINE	Well Number <u>MW-8L</u>

DEPTH IN FEET	WELL CONSTRUCTION DETAIL	E COUNT	несобент	SWANC	W.S.	DESCRIPTION
-0	Q			000000	BKS	0-2' 03' sand and gravel fill3-1.3' sandy silt, 20% sand, fine grained, brown (5YR3/4). 1.3-1.4' slag with green sand. 1.4-2' sandy silt, 10-20% sand, brown (5YR4/1).
-2	\$ 6 \$ 10 \$ 6 \$ 5 \$ 10 \$ 6 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5		100		8xG	2-4' 2-4' 40% silt, 30% sand and 30% gravel, brown (5YR4/1) gravel has slag pieces; also pieces of paper, wood, green staining on silt and pebbles, moist.
-4	11 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				5	4-6' 4-4.8' fill as above. 4.8-5.3' sand with about 20% gravel (5YR3/2), wet. 5.3-6' clay, gray (N-4), moist, plastic, stained black at 16-18", mothball edor.
-6						6-8' Meadow mat, top 10° is very degraded to black clayey material.
- B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100		BK6	B-10' Meadow mat.
-	0.0000000000000000000000000000000000000		48		ex s	

	JECT STANDARD CHLOR	INE		WELL	NUMBER MW-BL		
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	BLOW COUNT	яєсоўєях	SWAUC SWAUC	HANNAR .		DESCRIPTION
-9	5.5.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	M	48		BKG		
_11			100		8KG	10-12'	10-10.8' caving. 10.8-12' meadow mat. _
13	- bentonite seal	\bigvee	100		B≭S	12-14*	12-13.1' meadow mat. 13.1-14' very fine grained sand, green gray (5GY4/1), 20-30% clay, moist.
-15			100		B≭G	14-15	fine and very fine grained sand as above, 20-30% clay, interstitial and lenses.
-17	10 slot stainless steel screen	_	100		100	15-1B '	16-16.7' caving 16.7-16.9' fine grained sand as above 16.9-18' clay, gray (N-4), stiff, dry; top 2' HNU = 100.
-19							
-21							_

Pro	ject	_51	ANDAR	D CHLO	RIN	ΙΕ				We]] Number <u>MW-9L</u>
Loc	Location KEARNY NJ						Co	ordinates <u>E604139.06. N698262.42</u>			
Geo	Geologist <u>Celia Greenman</u>								To	of Casing Elevation 10.09 feet	
Dri	illing	Con	tract	or <u>J</u>	.c.	And	erso	n_		Gr	oundsurface Elevation 7.55 feet
Dri	ller	_Jo	n Urb	an						To	tal Borehole Depth <u>21 feet</u>
Dri	lling	Met	hod	<u> Hollo</u>	w s	tem :	auge	r		To	tal Well Depth <u>21 feet</u>
Dia	meter	of	Boreh	ole _	12	inch	es			Da	te Started <u>12/10/90</u>
Dia	meter	of.	Well	Casing	-	<u>4 in</u>	ches	<u> </u>		Da	te Well Completed 12/10/90
DEPTH IN FEET	WELL	CONST	(RUCTION	N DETAIL	1. PERSE	BLOW	RECOVERY	SHEETE	EWSW.		DESCRIPTION
		T	7								
-0		ا ما	<u> </u>	*	L			1-11-1		0-5.	SILT, sandy, fine grained, pockets of
		9	0.0		N /						green crystallization, brown (5YA3/2), dry.
		0	0		W						
-		4	4		X		95		8K6		1
		9	9		M						
		a	4		/ \						
-2		0	0							2-4'	Sand, fine grained, 30% silt, micaceous, pockets of green mineral, brown
		٥	4		M						(5YR3/2), dry.
					W		95		8 K6		
		0	0.0		l٨						
	:	0	• 4		$V \setminus$						
_4				<u> </u>						4-6'	Sand, fine grained, 25% clay, pockets
			0.0.0.0.0.0.0	Seal	1						of green mineral, moist, brown
			4	grour	M						(5YR3/2).
-		80.0	0	2	IY		90		BKS		
		0	0		M						
		9.0	• •		$V \setminus$						
-6	Y		0							6-8'	Sand and clay, 50/50, fine grained
	†	á	٥		1						sand, wet. brown (5YR3/2).
			Δ.		\mathbb{V}						
-		0.4	0.4		Y		100		BXB		
		۵. م. ه	5 a								
		٥٥	6		$V \setminus$						
-8		9	9.8							8-10	
		4	0.0		$ \bigvee $		100		BXS		grained sand, plastic clay, pocket of yellow green mineral at 8 feet.
		91	6		$[\Lambda]$						9-10' clay, plastic, 30% sand at 9'. 15% sand at 10', some clasts of
-		la	ــ امنعد	L _	\vdash			[~]			red and black clay, wet, brown (5783/2)
			····		٠			ــــــــــــــــــــــــــــــــــــــ		<u> </u>	

(Pa	ge 2 of 2)			UVLNUUIIULI VILL			
PRO	JECT STANDARD CHLOR	INE				WELL	NUMBER MW-9L
DEPTH IN FEET	WELL CONSTRUCTION DETAIL		RECOVERY		#X/9/X#	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION
-9	Q. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	M	100		BKG	10-12'	O-11.3° clay, as above, moist,
-11	9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		100		3	orte section to the s	brown (5YR3/2). 11.3-12' meadow mat, very clayey, moist, brown (5YR3/2).
-13	- 1898	\bigvee	65		BKS	12-14*	Appears to be mostly caving, clayey sand with meadow mat in nose of spoon, moist, brown (5YR3/2).
-15	- bentonite seal		100		8KG	14-16'	14-15' sand with clay, may be caving, looks like sand at shallower depths, 20% clay, moist, gray brown (5YR3/2). 15-15.4' clay with sand, 30% fine grained sand, plastic, moist, gray (5Y4/1). 15.4-16' sand, fine grained with 40% plastic clay, moist, gray (5Y4/1).
-17	e. J. screen ———————————————————————————————————		100	ZZ	BK6	16-18'	mat, moist, gray brown (5YR3/2). 16.7-18' sand, fine grained, well sorted, no clay, moist; brown gray (5YR6/1) and brown (10YR5/4).
-19	10 slot stainless steel .		100		84.6	18-20'	18-18.5' caving, gray green clay, dry, gray (566/1). 18.5-19.3' sand, fine grained, mixed with some gray brown sand, well sorted, yellow crange (10YR6/5), moist. 19.3-20' clay, stiff, dry, gray (N-4).
_21							

Project STANDARD CHLORINE
Location <u>KEARNY</u> , NJ
Geologist <u>Celia Greenman</u>
Drilling Contractor <u>J.C. Anderson</u>
Driller <u>Jon Urban</u>
Drilling Method <u>Hollow stem auger</u>
Diameter of Borehole <u>12 inches</u>
Diameter of Well Casing 4 inches

Well Number MW-10L

Coordinates E603775.85, N698104.42

Top of Casing Elevation B.12 feet

Groundsurface Elevation 5.31 feet

Total Borehole Depth 17 feet

Total Well Depth 16 feet

Date Started 12/10/90

Date Well Completed 12/10/90

DEPTH IN FEET	NELL CONSTRUCTION DETAIL	BLOW COUNT	яесойевт	SWEE	#W/W		DESCRIPTION
-0	0.0.0					0-5,	Silty sand, 30% silt, fine grained sand, dry, brown (5YR4/4).
-2	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100		BK 6	2-4'	Silt, 15% sand, some peobles, pockets of green mineral; dry; brown, (5YR3/2).
-4	11 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		70		G BK6	4-6'	4-4.55' silt, as above. 4.55-5.4' sand and gravel, 50% gravel, 35% sand, fine grained, 15% clay, pockets of green mineral, wet, brown (5YR3/2).
-6			100	0 0 0 0 0 0 0	30,00	6- B .	Sand and gravel as above, wet, brown (5YR3/2).
-8						B-10'	8-9' gravelly silt, 25% gravel, stringer of dull gray mineral at 9', moist, brown, (5YR3/2). 9-10' meadow mat, moist.

	JECT STANDARD CHLOR	INE			WELL NUMBER MW-10L	
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	E BLOW	RECOVERY	SHORE	#KK/K#	DESCRIPTION
-9	te seal +	\bigvee	100		BKG	
-11			100		BKG	10-12' 10-10.9' caving, sand and gravel, wet, brown gray. 10.9-11.5' meadow mat, moist. 11.5-12' sandy clay, very plastic, very fine grained sand, 30% pieces of mat, moist, green gray (564/1).
- -13	Inless steel screen		80		BKG	12-14' 12-12.4' caving, sand and gravel, wet, brown gray. 12.4-13.6' sandy clay/clayey sand, 30% fine grained sand/30% clay; some clasts of red clay, dry, green gray (5G4/1).
-15	10 slot stainless		100		BKG	14-16' 14-14.4' caving, sand and gravel. 14.4-14.7' sand, fine grained, well sorted, moist, gray (5Y4/1). 14.7-15.1' sand, fine grained, well sorted, moist, brown (10YR5/4). 15.1-16' silty sand, fine grained sand, 35-40% silt, dry, brown (5YR3/4).
- - 17	<u>↑ (3=13)</u> <u>+</u>		-100		BK G	16-17' 16-16.2' caving, wet. 16.2-16.6' sandy silt, very fine grained sand, 30%; moist, brown (5YR3/4). 16.6-17' silty clay, very stiff, crumbly, dry, brown (5YR3/4).
- -19						
-21	•					

Project <u>STANDARD CHLORINE</u>	Well Number <u>MW-11L</u>
Location <u>KEARNY</u> , NJ	Coordinates <u>E603816.29. N698489.69</u>
Geologist <u>Celia Greenman</u>	Top of Casing Elevation _7.88 feet
Drilling Contractor <u>J.C. Anderson</u>	Groundsurface Elevation 4.74 feet
Driller <u>Jon Urban</u>	Total Borehole Depth <u>18 feet</u>
Drilling Method <u>Hollow stem auger</u>	Total Well Depth 17 feet
Diameter of Borehole 12 inches	Date Started <u>12/13/90</u>
Diameter of Well Casing 4 inches	Date Well Completed 12/13/90
Daniel of the a decing	

DEPTH IN FEET	WELL CONSTRUCTION DETAIL	ESLONT	RECOVERY	SYMBOL	#XXX	DESCRIPTION
-0		M				0-2' 08' Silt with chrome slag, moist, brown (10YA4/2). .8-1.6' sand and gravel, black coating, odor, moist, black.
-2	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		80		15-50	2-4' 2-2.7' sand and gravel fill, as
	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	\bigvee	90	္ခ်္	20–50	above, odor, wet, black. 2.7-2.95' sand, fine grained, well sorted, 5% gravel (pea sized), moist. gray (N-5). 2.95-3.8' sand, fine grained, well sorted, 5% gravel, moist, brown (5YR5/2).
4	9-40, 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		80	14- 14- 14- 14- 14- 14- 14- 14- 14- 14-	10	4-6' Slag fill, coated black, odor, wet, black.
-6			100	V-V-	20-110	6-8' 6-6.5' slag fill, sand, black coating, odor, wet, black. 6.5-7.5' sand, fine grained, clayey in pockets, 30% coated, strong odor, wet, black.
-8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					8-10° 8-8.3' caving, wet.
-	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\mathbb{X}	55	Specification of the second se	20-50	8.3-9.1' meadow mat, contains 5% sand and clay, moist, dark gray (5YR4/1).

(Page 2 of 2)				OVERIOURIDER WELL				
PROJECT STANDARD CHLOR	RINE				WELL	NUMBER MW-11L		
DEPTH WELL CONSTRUCTION DETAIL	ESTON	RECOVERY	SWANG	HEYK97A		DESCRIPTION		
9						-		
(1005)	X	55		20-50				
- 11		100		20-50	10-12'	10-10.6' meadow mat, moist. 10.6-11.3' sandy clay, 40% sand, plastic, stained black, odor, moist, gray (5YR2/1). 11.3-12' sand, fine grained, well sorted, stiff clay lense at 11.9-12', moist, gray (5Y6/1).		
13		85		20	12-14'	12-12.5' caving. 12.5-13.7' sand, fine grained, very well sorted, no clay, wet, gray (5YR5/1).		
Ss steel screen		85		20	14-16'	14-14.4' caving.		
-15 stuites	\bigvee	100		30-70		14.4-15 sand, fine grained, well sorted. gray (N-5). 15.2-16 clayey sand, clay 25-30%, moist, gray (N-5).		
					16-18'	16.2–16.6' sandy clay, 15% fine grained sand, dry, gray (5YR6/1).		
		100		10-110	भन्ने _{स्था} ना	16.6-18' clay, stiff, slightly plastic, dry, gray (5YR4/1). HNU readings fell from 110 at the top of the clay to 10 at the base.		
-19								
_21								

Loc Geo Dri Dri Dri	meter of Borehole	man .C. Ande w stem a 12 inche	ersp	Coordinates <u>E603822.89</u> , N698493.74 Top of Casing Elevation <u>7.2 feet</u> Groundsurface Elevation <u>4.64 feet</u> Total Borehole Depth <u>7.5 feet</u> Total Well Depth <u>7.5 feet</u>		
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	BLOWT	ЯЕСОЙЕЯ	gwan.c	#19%	DESCRIPTION
-O	11 (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		80		15-50	0-2' 08' Silt with chrome slag, moist, T brown (10YA4/2). .8-1.6' sand and gravel, black coating, odor, moist, black.
-2	screen		90	ှိဝ ိ ဝါ	20-50	2-4' 2-2.7' sand and gravel fill, as above, odor, wet, black. 2.7-2.95' sand, fine grained, well sorted, 5% gravel (pea sized), moist, gray (N-5). 2.95-3.8' sand, fine grained, well sorted, 5% gravel, moist, brown (5YR5/2).
-4	stainless steel		80	Va-	10	4-6' Slag fill, coated black, odor, wet, black.
-6			100		20-110	6-8' 6-6.5' slag fill, sand, black coating, odor, wet, black. 6.5-7.5' sand, fine grained, clayey, in pockets, 30% coated, strong odor, wet, black.
_						

Project <u>STANDARD CHLORINE</u>	Well Number MW-12L
Location <u>KEARNY</u> , NJ	Coordinates <u>E603663.18, N698342.52</u>
Geologist <u>Celia Greenman</u>	Top of Casing Elevation <u>6.99 feet</u>
Drilling Contractor <u>J.C. Anderson</u>	Groundsurface Elevation 4.52 feet
Driller <u>Jon Urban</u>	Total Borehole Depth <u>18 feet</u>
Drilling Method <u>Hollow stem auger</u>	Total Well Depth <u>17.5 feet</u>
Diameter of Borehole <u>12 inches</u>	Date Started <u>12/12/90</u>
Diameter of Well Casing <u>4 inches</u>	Date Well Completed 12/12/90
000TU	

DEPTH IN FEET	WELL CONSTRUCTION	DETAIL E	BLOW	RECOVERY	SYMBOL	\$100X	DESCRIPTION
-0	0,000,000			80	000000	BKS	0-2' Sand and gravel fill, wet at 1', brown (5YR3/4).
- 2	11 S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			25		BKG	2-4' 2-2.3' gravel fill, strong odor. 2.3-3.5' odor, black coal tarry coating, sheen, wet, brown (5YA3/4).
-4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	grout seal-		15	०००००००००००० ०००००००००००	ſ	4-6' Gravel fill, odor, some lumber, wet, black.
-6				70.) 0	10-20	5-8' 6-6.6' gravel fill as above, odor, wet, black. 5.6-7.4' meadow mat, moist.
-8				50		15	8-10' 8-8.8' caving, wet, black. 8.8-9' meadow mat.

	age 2 of 2)				OVERTOUTE VALLE			
PRO	JECT STANDARD CHLOR	INE		т		WELL	NUMBER MW-12L	
DEPTH IN FEET	NELL CONSTRUCTION DETAIL		RECOVERY	SWARTE	#100m		DESCRIPTION	
-9			-				-	
	te seal	\mathbb{X}	50		15			
-11	- bentonite seal	M	70	The the course of the course o	5–1 5	10-12'	10-10.6' caving. 10.6-11.4' sand, fine to very fine grained, well sorted, 20% clay, clay stringer at 11.1-11.2', moist, gray (5Y4/1).	
-	→					12-14'	12-12.9' caving. 12.9-13.8' sand, fine grained, well sorted, no clay, moist, brown (10YR5/4).	
-13	screen	\\	90		30			
-15			100		50 - 80	14-16'	14.8-15' sand, fine grained, clayey, up to 20% in lenses, moist, gray (N-4). 15-15.1' black staining. 15.4-15.5' clay. 15.5-15.8' sand15.8-15.9' clay, gray, stiff.	
-17			45		20	16-18	15-16:6° caving. 16.5-16.9° clay, stiff, crumbly, dry, gray (5Y4/1).	
-19								
-21								

Project STANDARD CHLORINE	Well Number <u>MW-12U</u>			
Location <u>KEARNY</u> , NJ				
Geologist <u>Celia Greenman</u>	Top of Casing Elevation <u>B.13 feet</u>			
Drilling Contractor <u>J.C. Anderson</u>				
Driller <u>Jon Urban</u>	Total Borehole Depth 6.5 feet			
Drilling Method Hollow stem auger	Total Well Depth 6.5 feet			
Diameter of Borehole 12 inches	Date Started <u>12/13/90</u>			
Diameter of Well Casing 4 inches	Date Well Completed 12/13/90			
PTH MELL CONSTRUCTION DETAIL BLOW DE SE	DESCRIPTION			

DEPTH IN FEET	WELL CONSTRUCTION DETAIL	RECOVERY	SYMBOL	REVONA		DESCRIPTION
O	11 (Sea)	80	00000	BK 6	0-5.	Sand and gravel fill, wet at 1', brown (5YR3/4).
_2	n—————————————————————————————————————				2-4'	2-2.3' gravel fill, strong odor. 2.3-3.5' odor, black coal tarry
_	I scree	25	000000	BKG		coating, sheen, wet, brown (5YA3/4).
-4	ot steinless stee	15	000000	1	4-6'	Gravel fill, odor, some lumber, wet, black.
-6	10 510			•	6-B'	6-5.6' gravel fill as above, odor, wet, black.
-		70	0.0	10-20	-	NEC, DIGIN.
-8						
-						

	age 1 01 37						
Pro	oject <u>STANDAR</u>	CHLORIN	E				ll Number <u>MW-13L</u>
Loc	ation <u>KEARNY</u>	. NJ				Cos	ordinates <u>E698375,52, N663923,15</u>
Ged	ologist <u>Celia</u>	Greenman				Top	o of Casing Elevation <u>11.59 feet</u>
Dri	illing Contracto	or <u>J.C.</u>	Anders	on_		Gri	oundsurface Elevation 9.01 feet
Dri	iller <u>Jon Urba</u>	∍n			Tot	tal Borehole Depth <u>22.5 feet</u>	
Des	illing Method .	Hollow s	tem auge	er			tal Well Depth 22.5 feet
	ameter of Boreho						te Started <u>12/17/90</u>
i	ameter of Well (te Well Completed 12/17/90
	1	1 .			1	T	
DEPTH IN FEET	WELL CONSTRUCTION	DETAIL	BLOW KRAY	BARING.	EWSW4		DESCRIPTION
 0				1111		0-5,	Silt with fine grained sand, chrome slag pellets, dry, brown (5YR4/4).
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\ <i>\ </i>				ļ	, , , , , , , , , , , , , , , , , , , ,
	60 60	[V	50		BKG		
		I ΛΙ				:	
		/\					
L2				Ш		2-4	2-2.3' silt, dry, brown (5YR3/4).
	0 0	\ /					2.3-2.B' sand, fine grained, black
	6.49	\/					with white crystals, dry, black. 2.8-3.1 silt, moist, brown (5YR3/4).
-	9	l Y	70	噩	6		3.1-3.4' sand, fine grained, moist gray (N-4).
		/ \					
-4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					4-6'	4-4.2' caving, moist.
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						4.2-6' sand, fine to medium grained with 10% gravel, green pockets mineral,
	4 Q C	i \/					odor DCB, moist, gray (5GY4/1).
-		à	100		BK6		
	0						
		/ /					
<u></u> −6	6. 6.		-			6-8	Sand as above, odor DCB, moist, gray
	0.0 0.0	N //					(5GY4/1).
	4	l IVI					
 	9	I X	100		BK6		
	0.0						
	9 9	/ V					
- 8	0 0 0					8-10'	Sand, as above, odor, moist, gray - (5GY4/1).
	• 4	. IXI	100		2		15514717.
		_ /\					
]	•

	JECT STANDARD CHLD	RINE				WELL	NUMBER MW-13L
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	BL COL	TYS HECOVERY	SYRBOL	#W/W#		DESCRIPTION
-9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	\bigvee	100		2		
-11	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100		5	10-12'	Sand as above, 15% clay, bits of paper, moist, gray (5GY4/1).
-13	0,000,000,000,000,000,000,000,000,000,		100		. 19	12-14*	12-12.65' sand as above, black staining at 12.65', moist, gray (5GY4/1). 12.65-13' clay, moist, gray-brown. 13-14' meadow mat, moist.
_ 15	e bentonite seal		100		5	14-16'	14-14.6' meadow mat. 14.6-15.3' sandy clay, 30% sand, fine grained, odor, wet, gray (5YR4/1). 15.3-16' sand, fine grained, well sorted, moist, gray (N-5).
- 17			100		6	16-18°	16-17.2' sand, fine grained, well sorted, 10% clay, odor, moist, gray (N-6). 17.2-18' sand, fine grained, well sorted, no clay, odor, moist, brown gray (5YR4/1).
-19	stainless steel screen		100		3 D	18-20'	18-19' sand, very fine grained, clayey, up to 40%, caving?, moist, gray (N-6). 19-20' sand, fine to very fine grained, black staining 19.4-19.7', odor, moist, brown gray (5YR4/1).
-21	10 slot st		100		25-50	20-22'	20-20.6' sand caving, moist, gray (N-6). 20.6-21.9' clayey sand, fine grained sand, 15% clay, clay stringer 21.4-21.5', black staining,

(Page 3 of 3)

(Pa	ige 3 of 3)					· UVLINUINDEN VILLE
PRO	JECT STANDARD CHLOR	INE				WELL NUMBER MW-13L
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	EDUNT COUNT	RECOVERY	SWEELE	W.N.A	DESCRIPTION
-21 -	- Sand pack		100-		25-50	particularly 21.5-21.8°, strong odor, moist, gray (N-3). 21.8-22° clay, stiff, dry, gray (N-5). HNU readings on bottled samples.
-23	<u>v Malid v</u>					
_						
-25						
_						
_27						
_	•					
-29						
-31						
-						
-33		-				

(17)	age 1 o	17 21						ALINONNOLIA METE		
J	•		DARD CHLD							11 Number <u>MW-13U</u> ordinates <u>E603931.08, N698380.01</u>
1			lia Green							o of Casing Elevation <u>11.26 feet</u>
1	_		actor <u>J</u>							oundsurface Elevation 9.14 feet
1			Urban							tal Borehole Depth <u>11.5 feet</u>
										tal Well Depth <u>11.5 feet</u>
	_									te Started <u>12/17/90</u>
										te Well Completed <u>12/17/90</u>
DEPTH IN FEET	WELL C	CONSTRUC	TION DETAIL	INERVE	BLOW COUNT	несовени	SYRBOL	EWSW.		DESCRIPTION
		T								
-0		۽ ج	J 1	\vdash	 		.11.11		0-5,	Silt with fine grained sand, chrome
		0.1	.†	\mathbb{N}						slag pellets, dry, brown (5YA4/4).
		00.00.00.00	à	W		50		BK 6		
		400	Seal	١٨		50		BYP		
				V						
_2		0.9.000	grout		1				3-4'	2-2.3' silt, dry, brown (5YR3/4).
		0 4 0]						-4	2.3-2.8' sand, fine grained, black
		6.9.4	4	W	·					with white crystals, dry, black. 2.8-3.1' silt, moist, brown (5YR3/4).
F			 	I X		70		6		3.1-3.4' sand, fine grained, moist gray (N-4).
			7 - 7 - 7	\mathbb{N}						
i.			35	V						
-4			← <i>Dentonite seal</i>						4-5'	4-4.2' caving, moist.
			nto	M						4.2-6' sand, fine to medium grained with 10% gravel, green pockets mineral,
				IV					;	odor dCB, moist, gray (5GY4/1).
 			1 +			100		BK6		
			.]	\mathbb{N}						
- 6				1						•
									6-8'	Sand as above, odor dCB, moist, gray (5GY4/1).
	<u></u>		*	M						
			sand pack	$\ \mathbf{v} \ $		100		BX6		
			bue	M						
	<u>₹</u>			$\ \cdot \ $						
<u>_8</u>	-		1						B-10'	Sand, as above, odor, moist, gray
				\mathbb{N}					- • •	(56Y4/1) .
			1			100		2		
 	▎╶┴╴╽		<u> </u>	\vdash			**:			

(Page 2 of 2)

(Pa	ge 2 of 2)		·····	UVLHDUHULIN WLLL		
PRO	JECT STANDARD CHLOR	INE			········	WELL NUMBER MW-13U
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	BLOW COUNT	песобену	SPARMIC	器級器	DESCRIPTION
-9		M	100		2	
_11			100		5	10-12' Sand as above, 15% clay, bits of paper, moist, gray (5GY4/1).
-13						•
-15						<u>-</u>
- 47						
-17 - -						
-19						
-21			,			-

Pr	oject	_51	ANDA	RD CHLC	RIN			. We	ell Number <u>MW-14L</u>		
Lo	catio	n <u>-k</u>	EARN	Y, NJ						Co	pordinates <u>E604031,04, N698567,13</u>
GE	eologi	st _	Celi	a Greer	man					. To	op of Casing Elevation <u>7.99 feet</u>
Dr	nilli	g Con	trac	tor	1.C.	And	erso	Gr	roundsurface Elevation <u>5.82 feet</u>		
Dr	iller	<u> </u>	n Ur	ban						To	otal Borehole Depth <u>18 feet</u>
Dr	illin	g Met	hod	<u>Hollo</u>	w si	tem :	auge	er_		To	stal Well Depth <u>18 feet</u>
Di	amete	r of	Bore	nole _	12 :	inch	es			Da	te Started <u>12/17/90</u>
Di	amete	r of	We]]	Casing		4 in	ches	3		Da	te Well Completed <u>12/17/90</u>
DEPTH IN FEET	NELL	_ CONST	RUCTIO	ON DETAIL	1.NEBAEL	BLOW	яесобен	SPABOL	HEVS OVA		DESCRIPTION
		T	7								
<u></u>		P	50	1						0-5.	Silt with slag pellets. moist, brown (5YR3/4).
		9.0	0.0		M			羉			Druwn (STH3/4)
		6. q	0.0		W		40	薑	2-5		·
}		0.0	0.		M			齹			
		9	0		VV						
-5		a e	00		H			0		2-4'	2-2.3' silt and slag, caving, wet,
		0 4	9		M						brown (5YR3/4). 2.3-2.9° gravel and sand fill, gravel
		6.0	6.0		IVI			000			1/2" diameter, medium grained sand 40%, brown (10YR6/6).
-		0	0		M		70	0.0	BKG		2.9-3.4' silt and gravel, moist, brown (10YR4/2).
	7	0	2		M			000			(10114/2).
_4	=		90					000			
		0	0.0	sea]	\prod					4-6'	4-4.4' caving, slag pellets. 4.4-5.1' silt and gravel as above,
		0.4	6		\mathbb{M}	İ					lumber, wet, brown (10YR4/2).
-		0.0	9	grout	IVI		55	000	BK6		
		0 Q	0		M						·
		• a	6 4		VV						
- 6		٥	0			-		<u>o d</u>		6-B'	6-6.5' sand, medium to coarse grained,
		0	0		M						fragments of brick, small quartz
		٥٩	0.0		V		[Ę			pebbles, gray brown (5YR4/1). 5.5-7.5' slag pellets, wet.
-		0	0				100	\$ 5	15		7.5-8' sand, medium grained, well sorted, stained black at B', wet,
		<u>.</u>	0.0		/\			\$			gray brown (10YR4/2).
		0.0	0.0		/ 					manti nan-	
<u>⊢</u> 8		0	0		\Box	•				B-10'	8-B.4' gravel caving, wet, gray
		9	9 4 0		XΙ		100		2-18		8.4-10' meadow mat, bottom at 10'
		9		L	\square						is quite woody, rest is very clayey, moist, gray (N-4).
<u> </u>											

	PROJECT STANDARD CHLORINE WELL NUMBER MW-14L										
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	1 .1	BLDW COUNT	песобент	SWEEC.	EWSW8		DESCRIPTION			
_9		M		100	Areas, av.	2-18		·			
-11	— bentonite seal	M		100		4-7	10-12'	10-10.3' gravel caving. 10.3-10.6' clay, very plastic, sticky, odor, moist, gray (5YR2/1). 10.6-11' clay, sand and meadow mat, moist, gray (5YR2/1). 11-12' meadow mat, egg odor, grassy. moist.			
-13				100		2	12-14'	12-12.5° clay and meadow mat, caving, gray (N-3). 12.5-12.7° sand and meadow mat, fine grained, caving, dry, gray (N-4). 12.7-13.4° sand and clay, 50/50, fine grained, dry, gray (N-6). 13.4-14° sand, fine grained, well sorted, 10% clay, moist, gray (N-6).			
- 15		sorted, moist, gray (N-6). 15-15.4' sand and clay 50/5	sorted, moist, gray (N-6). 15-15.4' sand and clay 50/50. fine grained sand with interstitial clay.								
-17	10 slot stall	\bigvee		100		20-60	16-18'	16-16.5' sand and meadow mat, caving wet, gray (N-6). 16.5-16.7' clay, sandy, 20% fine grained sand, moist, gray (N-6). 16.7-18' clay, fairly stiff and crumbly, strong odor, slightly moist, gray (N-5). HNU 60 ppm at top of clay, 20 ppm at bottom.			
-19											
							,				
-21								-			

(P)	age 1 of 1)		 	DACIIDOIIDE IN MEET			
Pro Loc Geo Dr Dr: Dr:	oject STANDARD CHLD cation KEARNY, NJ clogist Celia Green illing Contractor J iller Jon Urban illing Method Hollo	man .C. Anderso w stem auge 12 inches					
DEPTH IN FEET	WELL CONSTRUCTION DETAIL	IN BINE AND A SECONDARY AND A SECONDARY AS A SECOND	DESCRIPTION				
-0-2-5		70	2-5 BKG	0-2' Silt with slag pellets, moist, brown (5YR3/4). 2-4' 2-2.3' silt and slag, caving, wet, brown (5YR3/4). 2.3-2.9' gravel and sand fill, gravel 1/2" diameter, medium grained, sand 40%, brown (10YR5/6). 2.9-3.4' silt and gravel, moist, brown (10YR4/2). 4-6' 4-4.4' caving, slag pellets. 4.4-5.1' silt and gravel as above, lumber, wet, brown (10YR4/2). 6-8' 6-6.5' sand, medium to coarse grained, fragments of brick, small quartz pebbles, fairly well sorted, gray brown (5YR4/1). 5.5-7.5' slag pellets, wet. 7.5-8' sand, medium grained, well sorted, stained black at 8', wet, gray brown (10YR4/2).			
-8							

V = 5	
Project STANDARD CHLORINE Location KEARNY, NJ Geologist Celia Greenman Drilling Contractor J.C. Anderson Driller Jon Urban Drilling Method Hollow stem auger Diameter of Borehole 12 inches Diameter of Well Casing 4 inches	Well Number MW-15L Coordinates E693135.12, N697843.83 Top of Casing Elevation 6.4 feet Groundsurface Elevation 3.9 feet Total Borehole Depth 16 feet Total Well Depth 16 feet Date Started 12/6/90 Date Well Completed 12/6/90
PTH WELL CONSTRUCTION DETAIL BLOW SEE SEE	DESCRIPTION

DEPTH IN FEET	MELL CONSTRUCTION DETAIL	BLOW BLOW	несоўсях	SYMBOL	HEXOUR		DESCRIPTION
-0	a; a; 4		<u> </u>				0-2' black and gray asphalt
_	11 4 5 5 5 5 5 5 5 5 5		100		BK€		material.
-2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		88		1	1	2-2.3' silt, dark gray. 2.3-2.7' brick. 2.7-3.5' black silt and limestone fragment fill. 3.5-3.75' lumber.
-4	Ses tuone		50		BX6	4-5'	4-5' no sample. 5-6' fill, dark brown silt and gray sandy material with large flakes of mica; possible meadow mat in nose of spoon.
-6			33		BK6	6-8'	Some mica and meadow mat.
-8			25		BK6	8-10'	Meadow mat, fine grained sand in nose of spoon, very soft material, sand is brown gray (5YR3/2)

(Pa	UVLINDUNDLIN VALLE								
PRO	JECT STANDARD CHLOR	INE		 	WELL NUMBER MW-15L				
DEPTH IN FEET	NELL CONSTRUCTION DETAIL	BLOW COUNT	несовеня	HEVS OVA	DESCRIPTION				
-9					-				
	te seu	X	25	BKG					
-11	Dentonite seal		65	B KS	10-12' 10-10.25' meadow mat, caving. 10.25-10.75' fine grained to very fine grained sand with pieces of meadow mat, brown gray (5YR4/1), clay is 30-35%. 10.75-11.3' fine grained sand, no clay (5YR4/1).				
_		Ш			12-14' 12-12.25' caving.				
_13	ss steel screen		63	2	12.25-13.25' sand, fine grained, brown- gray (5YR4/1).				
	inless s	\bigvee		-	·				
				-	14-16' 14-15.25' sand, brown gray (5YR4/1), medium to coarse, well sorted, wet 15.25-15.5' clay, brown-gray, stiff, oozing, brown-blue, liquid.				
-15			75	150	 				
-									
-17									
_19									
	į								
-	-								
-21									

Pro	oject <u>STANDARD CHL</u>	ORINE	Well Number <u>MW-15U</u>						
Lot	cation <u>KEARNY</u> , NJ			Coordinates <u>F603138.76, N697842.67</u>					
Ged	ologist <u>Celia Gree</u>	nman		Top of Casing Elevation <u>6.44 feet</u>					
Dri	illing Contractor _	J.C. Anders	on	Groundsurface Elevation 3.85 feet					
Dri	iller <u>Jon Urban</u>			Total Borehole Depth <u>6 feet</u>					
Dri	illing Method <u>Holl</u>	ow stem aud	er	Total Well Depth <u>6 feet</u>					
Dia	ameter of Borehole	12 inches	, , , , , , , , , , , , , , , , , , , 	Date Started <u>12/6/90</u>					
Dia	ameter of Well Casin	4 inche	Date Well Completed 12/6/90						
DEPTH	,								
IN FEET	WELL CONSTRUCTION DETAIL	BLOW AND AND AND AND AND AND AND AND AND AND	SYRUC WYNYA	DESCRIPTION					
		1 1 6							
Lo									
				□ 0-2' 0-2' black and gray asphalt material.					
		M							
	screen ——>	IYI I							
		·	圔						
	screen	VV							
-2		H		2-4' 2-2.3' silt, dark gray.					
	tee	\mathbb{N}/\mathbb{N}		2.3-2.7' brick. 2.7-3.5' black silt and limestone					
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	V		fragment fill. 3.5-3.75' lumber.					
	n.le.	111	蠿						
		M = 1		·					
_4	2, 3		_蠿	4.6. 4.5					
	s10t			4-6' 4-5' no sample. 5-6' fill, dark brown silt and					
	8	1\//	圍	gray sandy material with large flakes of mica possible meadow mat in nose					
- 1				of spoon.					
		M	羉						
		VV							
- 6	V//// + 38			6-8' Some mica and meadow mat.					
	bentonite sea								
	mit								
	ento			,					
	30								
L ₈									
-									

ENVIRONMENTAL RESOURCES MANAGEMENT, INC. FOCUSED REMEDIAL INVESTIGATION (1996)

EK	M												age I OIE
Client: Standard Chlorine Chemical Company, Inc.									7905.03	3.01	Bo	ring/Well:	SB-1
je.	ct: F	ocuse	d Remedial I	nves	ligatio	חמ							
Date	Starte	ed:	8/16/96	Date	Com	pleted:	8/16/96	Screen:	NA			From:	-To:
Logged By: F. Nemec Checked By:								Pack:	NA	\		From:	-To:
Drilling Co.: JCA Driller: S. Berger)er	Seal:	N.A	\		From:	-To:
Method: Mud Rotary Equipment: ATV Portable Rig							Portable Rig	Grout:	N.A	\		From:	-To:
Borin	g Dep	oth:	18 ft.				Elevation: 4.82 ft.	Inner Cas					
Initial GW Level: 2.0 ft.					Level	NA	Time/Date NA	Outer Cas	sing/Stic	k Up:	NA	·	
Depth	Sample	Весо ивгу	Blow Count	Headspace ppm	Lithology		De	scription			Remarks		Well Construction
0 1						0-2 ft.	- 0-6" - asp to coarse fine to co	angular g			NA NA		
2 -		4" .	1,2,2,2	2		2-4 ft.	sand, son wet through	ne fine to					
4 —		2"	2,1,1,1	1		4-6 ft	Same as	previous,	wet.			1	
6 -		4 *	2,2,10,2	1		6-8 ft	Same as wood pied		with occ	asional		-	
8 -		4"	4,4,3,3			8-10	ft Dark brov 9 ft; Dark wet from	brown m	ic claye) eadow i	silt to nat,		- 	
10-		6 *	4,4,3,4			10-12		neadow п janic clay		dark	-	-	·
12—												· -	

Boring/Well: WO#: SB-3 L7905.03.01 Client: Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Started: Date Completed: NA From: -To: 8/5/96 8/5/96 Pack: Logged By: F. Nemec Checked By: NA From: -To: Seal: Driller: Drilling Co.: From: -To: S. Berger NA **JCA** Grout: NA Equipment: Method: CME Truck Rig From: -To: Mud Rotary Ground Surface Elevation: 4.63 ft. Inner Casing: NA Boring Depth: 18 ft. Outer Casing/Stlck Up: GW Level: Time/Date NA Initial GW Level: NA 4.0 ft. Lithology Recovery Sample Headspace ppm Well Remarks **Blow Count** Description Construction 12-14 ft. - Medium brown fine to medium 12 16" 16,20,16,19 15 NA sand, trace silt, very moist to wet, distinct odor. 14-16 ft. - Medium reddish-gray and brown 13,16,18,20 20" 2 fine to medium sand, some silt, saturated with DNAPL, grading to clayey silt by 15.5 ft., with frequent fine sand lenses. The lenses of sand are black and saturated with DNAPL to 16 ft. 20" 12,13,15,19 2 16-18 ft. - Medium gray clayey silt/silty clay, trace fine sand lenses, odor, but no DNAPL observed. 20-

Boring/Well: WO#: SB-4 L7905.03.01 Client: Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Completed: NA From: -To: 8/12/96 Date Started: 8/12/96 Pack: From: -To: Checked By: NA Logged By: F. Nemec Seal: -To: From: Driller: NA Drilling Co.: JCA S. Berger Grout: NA From: -To: Equipment: CME Truck Rig Method: **Mud Rotary** Inner Casing: NA Ground Surface Elevation: 4.20 ft Boring Depth: 16 ft. Outer Casing/Stick Up: NA Time/Date GW Level: Initial GW Level: 4.0 ft. Recovery Lithology Well Remarks Description Blow Count Construction Medium gray-brown to reddish-NA 0-2 ft. -12" 5,5,13,15 0 0brown to black fine to coarse sand fill, some fine rounded gravel, some silt, moist. Medium to dark reddish-brown and 20" 5,5,5,5 0.5 2-4 ft. gray fine to coarse sand, fine rounded and angular gravel, some silt, moist, wet at 4.0 ft. Same as previous, wet. 4-6 ft. -24" 2,3,5,6 1 Dark brown meadow mat, some 6-8 ft. -4" 2,1,1,2 organic silt, moist. Same as above to 9.5 ft.; 9.5-10 8-10 ft. -14" 2,2,3,8 8 ft. Olive-green fine sand, some silt, wet. Same as above to 11 ft.; 11-10-12 ft. -16" 5,5,6,6 10-12 ft. Dark gray to black fine to medium sand, little silt, wet. 3 12-

300 Phillips Boulevard, Sulte 200 Ewing, New Jersey 08618

Page 2 of __2___

Toject: Focused Remedial Investigation Date Started: 8/12/96 Date Completed: 8/12/96 Screen: NA Logged By: F. Nemec Checked By: Pack: NA Drilling Co.: JCA Driller: S. Berger Seal: NA Method: Mud Rotary Equipment: CME Truck Rig Grout: NA Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Inner Casing: NA Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Link Ground Surface Elevation: 4.20 ft. Description Re 10* 8,9,12,15 5 12-14 ft Dark gray to black fine to medium sand, little/some silt, wet, grading siltier with depth. 18* 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	From: From:	-To:						
Date Started: 8/12/96 Date Completed: 8/12/96 Screen: NA Logged By: F. Nemec Checked By: Pack: NA Drilling Co.: JCA Driller: S. Berger Seal: NA Method: Mud Rotary Equipment: CME Truck Rig Grout: NA Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Inner Casing: NA Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Light Co.: JCA Driller: S. Berger Seal: NA Method: Mud Rotary Equipment: CME Truck Rig Grout: NA Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Light Co.: JCA Driller: S. Berger Seal: NA Description NA Light Co.: NA	From:	-То:						
Logged By: F. Nemec Checked By: Drilling Co.: JCA Method: Mud Rotary Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Description Re 10" 8,9,12,15 12-14 ft Dark gray to black fine to medium sand, little/some silt, wet, grading siltier with depth. 18" 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	From:	-То:						
Drilling Co.: JCA Method: Mud Rotary Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Inner Casing: NA Initial GW Level: 4.0 ft. GW Level: NA Blow Count Blow Coun	From:							
Method: Mud Rotary Equipment: CME Truck Rig Grout: NA Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Inner Casing: NA Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Blow Count Surface Elevation: 4.20 ft. Inner Casing: NA Description Re 10" 8,9,12,15 5 12-14 ft Dark gray to black fine to medium sand, little/some silt, wet, grading siltier with depth. 18" 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	77	l						
Boring Depth: 16 ft. Ground Surface Elevation: 4.20 ft. Inner Casing: NA Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Fig. 10" 8,9,12,15 5 12-14 ft Dark gray to black fine to medium sand, little/some silt, wet, grading siltier with depth. 18" 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	- 7	-To:						
Initial GW Level: 4.0 ft. GW Level: NA Time/Date NA Outer Casing/Stick Up: NA Compared Compare	From:	-To:						
Blow Count Blow Count								
2— 10" 8,9,12,15 5 12-14 ft Dark gray to black fine to medium sand, little/some silt, wet, grading siltier with depth. 18" 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	NA Outer Casing/Stick Up: NA							
sand, little/some silt, wet, grading siltier with depth. 18" 8,12,14,16 25 14-16 ft Same as above to 14.5 ft.; 14.5-15.5 ft. Medium brown fine to medium sand, trace silt, wet,	emarks	Well Construction						
saturated with DNAPL from 15- 15.5 ft.; 15.5-16 ft. Medium gray sity clay with occasional fine sand lenses, wet.		NA						

ı
ERM

	M							WO#,			Bori	ng/Well:	B-5
Clien			rd Chlorine C				ny, Inc.	WO#:	L790	5.03.01			D-0
			d Remedial I		and the second second			Screen:		····			
Date	Start	ed:	8/6/96			pleted:	8/6/96			NA	SOF OF OR O	From:	-To:
Logg	ed By	F. N	emec		cked l	∃у:		Pack:		NA		From:	-To:
Drillin	ng Co	.: JC	Α	Drille	er: - 6	s. Berg	er	Seal:		NA		From:	-To:
Meth	od:	Mud	Rotary	Equi	pmen	t: CN	ME Truck Rig	Grout:		NA	7777	From:	-To:
Borin	g De	oth:	20 ft.	Grou	ınd Sı		levation:6.40	Inner Ca					
Initia	GW	Level:	7.5 ft.	GW	Level	: NA	Time/Date NA	Outer C	asing/	Stick Up:	NA		
Depth	Sample	Recovery	Blow Count	Headspace ppm	Lithology		De	escription)	·	Rema	arks	Well Construction
o — - -		20"	5,7,6,6	5		0-2 ft.	- Medium to coarse sa some and occasiona	nd fill, so ular gra	ome s vel,	ilt,			NA
2 -		18"	6,6,5,5	4		2-4 ft.	- Medium g coarse sa trace fine very mois	nd and o to coars	clayey		-		
4 — - -		20"	3,3,9,8	5		4-6 ft.	- Same as	previous	s, moi:	st.			
6 -		24"	9,8,10,12	5		6-8 ft.	- Same as	previous	s, wet	at 7.5 ft.		1	* 4
8 -		24"	3,3,4,3	4		8-10 1	10 ft. Dar	 Same as previous to 9.5 ft. 9.5- 10 ft. Dark brown-black meadow mat and organic silt, moist. 					
10-		10"	3,3,2,3			10-12	ft Dark brown mat and o	vn-black organic s	c meac silt, m	dow oist.			
12—													

Boring/Well: WO#: SB-5 L7905.03.01 Standard Chlorine Chemical Company, Inc. Focused Remedial Investigation Screen: Date Completed: Date Started: NA From: -To: 8/6/96 8/6/96 Pack: Checked By: Logged By: F. Nemec NA From: -To: Seal: Driller: Drilling Co.: From: -To: S. Berger NA JCA Grout: NA Equipment: Method: CME Truck Rig From: **Mud Rotary** -To: Inner Casing: NA Ground Surface Elevation: 6.40 Boring Depth: 20 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date NA 7.5 ft. NA Recovery Llthology Headspace ppm Well Sample Depth **Blow Count** Description Remarks Construction 12-14 ft. - Medium to light gray fine sand, 12-22" 4,3,8,9 NA trace silt, wet at 13 ft. 14-16 ft. - Light gray, well sorted, fine to 14 16" 17,26,29,21 2 coarse sand, trace fine rounded gravel, trace silt, wet. 16-18 ft. - Light gray fairly well sorted fine to 8* 26,27,29,21 4 16 medium sand, little/some silt, grading finder with depth, wet. 18-20 ft. - Light reddish-gray clayey silt, 18" 8,10,9,12 3 18 occasional fine sand lenses, moist to very moist. 20 22

300 Phillips Boulevard, Suite 200 Ewing, New Jersey 08618

Page 1 of __2_

Boring/Well: WO#: L7905.03.01 SB-6 Standard Chlorine Chemical Company, Inc. Focused Remedial Investigation Date Started: Date Completed: Screen: 8/7/96 NA From: -To: 8/7/96 Pack: Logged By: F. Nemec Checked By: NA From: -To: Seal: Drilling Co.: Driller: **JCA** S. Berger NA From: -To: Grout: Method: Equipment: NA From: **Mud Rotary** -To: CME Truck Rig Ground Surface Elevation: 7.99 ft. Inner Casing: NA Boring Depth: 22 ft. Outer Casing/Stick Up: Time/Date Initial GW Level: GW Level: 6.0 ft. NA NA Lithology **Весо**иегу Headspace ppm Sample Well **Blow Count** Remarks Description Construction 0 . 10" 6,2,2,2 0 0-2 ft. -Orange-brown fine to medium NA sand fill, some silt, little fine angular gravel, damp; 1-2 ft. Dark gray clayey silt and medium to coarse sand, little fine to coarse gravel, moist. 20" 3,4,3,3 Dark gray clayey silt and medium 2-4 ft. -0 to coarse sand fill, little fine to coarse gravel with yellow and green rock pieces, moist. 24" 3,6,8,9 0 4-6 ft. -Same as previous, very moist. Same as previous, wet at 6 ft. 24" 3,4,5,5 1 6-8 ft. -6 18" 3,3,10,10 0 8-10 ft. - Same as previous, wet. 8 4" 10-12 ft. - Dark brown and black peat 10-3,3,2,2 and organic silt, moist.

ER	\mathbf{M}												Dorie	ıg∕Well:		
Client	: s	tanda	rd Chlorine C	hem	ical C	ompa	ny, In	c.	WO#: L	7905	.03.01		BOIL	ig/vveii.	SB	-1
rojec	ct: Fo	ocuse	d Remedial I									-				
Date	Starte	d:	8/16/96			pleted:	8	/16/96	Screen:		VA.			From:		-To:
Logge	ed By:	F. N	lemec	Che	cked E	Зу:			Pack:		NA			From:		-To:
Drillin	g Co.	JC	A	Drille	er: ç	S. Berg	jer		Seal:		NA			From:		-To:
Metho	od:		Rotary	i	pmen			able Rig	Grout:		NA	<u> </u>	777	From:		-To:
Boring	g Dep	th: .	18 ft.	Grou	and St	urtace E		^{on:} 4. 82 ft	Inner Cas							
Initial	GW L	evel:	2.0 ft.	GW	Level	· NA	Time	^{Date} NA	Outer Cas	sing/S	tick Up:	NA				
Depth	Sample Recovery Headspee						De	scription			1	Remai	rks		Well Construction	
12		10"	5,11,12,12	0		12-14	:	Medium to medium s sorted, tra gravel, we	and, fairly ce fine su	/ well				 - - -		NA
14-		10"	10,12,13,18	0		14-16	9	ft Medium gray fine to medium sand, grading finer with depth, trace fine subangular gravel, wet.						-	7	
16—	-	16"	6,7,6,6	0		16-18	(Reddish-g occasional noist, stiff	lenses of	d clay I fine	rey silt, sand,					
20—								,						-		
24-							•			,			•	-		·

EKM												
Client: Standa	ard Chlorine (Chemi	cal C	ompar	ny, Inc.	WO#:	L790	5.03.01		Borin	g/Well:	SB-2
roject: Focuse	ed Remedial I	_							-			
Date Started:	8/6/96			oleted:	8/6/96	Screen	:	NA			From:	-To:
Logged By: F. N		Chec	ked E	By:		Pack:		NA			From:	-To:
Drilling Co.: JC/	4	Drille	r. S	s. Berg	er	Seal:		NA			From:	-To:
Method: Mud	Rotary		oment	CIVI	E Truck Rig	Grout:		NA		777	From:	-To:
Boring Depth:	18 ft.	!			levation: 4.30 ft	Inner C						
Initial GW Level:	4.0 ft.	GW L	.evel:	NA	Time/Date NA	Outer C	Casing/	Stick Up:	NA			
Depth Sample Recovery	Blow Count	Headspace ppm	Lithology		De	scription	1		F	emar!	ks	Well Construction
0 — 10"	4,10,8,9	4		0-2 ft	- Reddish b sand and frequent re gravel, we Black med	clayey s ounded t to 1.5	silt fill, and ar ft. 1.5	ngular -2 ft.			-	NA
2 - 0"	3,6,8,9			2-4 ft.	and cinde	r fill, ver						
4 - 12*	8,8,9,11	10		4-6 ft.	Black claye to coarse s wet, sheen	and, littl	ie coa				-	!
6 — 20*	4,10,11,12	12		6-8 ft.	- Same as p piece pres			d timber boon (8 ft.).				
8 — 0"	3,2,2,3			8-10 ft	- No recove counts, pr						-	
10- 24"	7,8,8,7	2		10-12 f	t Dark brow mat and o to wet. 11 brown fine moist to w	rganic s .5-12 ft sand, s	silt, ver Light	y moist gray-				

Page 2 of __2_

EKIVI											Do-I-	ng/Well:	
	Standa	rd Chlorine C	hem	ical C	ompar	ny, Inc.	WO#:	L790	5.03.01		BOTIF	iâ AA eli:	SB-2
		d Remedial I					Daza ==						_
Date Star		8/6/96			oleted:	8/6/96	Screen		NA		(V), (C)	From:	-To:
Logged B	y: F. Ne	emec		cked B	Ву:		Pack:		NA			From:	-To:
Drilling Co	o.: JC	A .	Drilie		. Berg	er	Seal:		NA			From:	-To:
Method:	Mud	Rotary		pment		ME Truck Rig	Grout:		NA		777	From:	-To:
Boring De	pth:	18 ft.				levation: 4.30 ft.		asing:		·			
Initial GW	Level:	4.0 ft.	NA	Time/Date NA	Outer Casing/Stick Up: NA								
Depth Sample	Весоуе пу	Blow Count	Headspace Headspace	Lithology		De	scriptio	n			Remai	rks	Well Construction
12	14".	17,18,26,30	1		12-14	ft Light gray well sorted	fine to I sand,	mediu trace	m fairly silt, wet.			-	NA
14-	16"	12,15,16,18	2		14-16	ft Light gray with increa (30% by 1 saturated DNAPL fro	ising si 5.5 ft.). with da	it cont Sand irk brov			-		
16	16"	9,8,10,12	5		16-18	ft Medium b clay, occa throughou	sional l	enses	yey silt/sil of fine sa	ty nd			·
20-									. •			- - - -	
22-													

Boring/Well: WO#: SB-3 L7905.03.01 Standard Chlorine Chemical Company, Inc. 'roject: Focused Remedial Investigation Screen: Date Started: Date Completed: From: -To: NA 8/5/96 8/5/96 Pack: Checked By: From: Logged By: F. Nemec. NA -To: Seal: Driller: Drilling Co.: From: -To: JCA S. Berger NA Grout: NA Equipment: Method: CME Truck Rig From: -To: **Mud Rotary** Inner Casing: NA Ground Surface Elevation: 4.63 ft Boring Depth: 18 ft. Outer Casing/Stlck Up: Initial GW Level: GW Level: Time/Date NA 4.0 ft. Lithology Recovery Невазраса ррт Well Sample **Blow Count** Remarks Description Construction 0 to 0.67 ft. Red-brown medium to 0. 6,8,12,10 0-2 ft. -24" NA coarse sand, some silt, some fine to coarse angular gravel, wet. 0.67 to 1.3 ft. Black coarse sand and cinders, very moist. 1.3 to 2 ft. Light gray-green silt, some fine sand, moist. Gray-green and red fine to medium 2-4 ft. -6,8,10,10 sand, silt and fine rounded gravel fill, moist. Dark gray-black fine to medium 24" 3,6,8,8 3 4-6 ft. sand and cinder fill, wet to 5 ft. 5-6 ft. Light gray-green silt, some fine sand, moist. Brown meadow mat, moist. 2,1,1,1 6-8 ft. -6" 6 24" 8-10 ft. -Same as previous, moist. 2,1,1,1 8 1 10-12 ft. - Light gray fine sand, some 2,2,2,2 6" 10 clayey silt, moist.

EKIM	L									· · · · · · · · · · · · · · · · · · ·		1 ago 2 or
Client:	Standa	ard Chlorine (Chem	nical (Compa	ny, Inc.	WO#: .	L7905.03.01		Borin	g/Well:	SB-6
roject:	Focuse	ed Remedial	Inves	tigati	on							
Date Star	ted:	8/7/96	Date	Com	pleted:	8/7/96	Screen	: NA			From:	-To:
Logged B	у: F. N	emec	Che	cked l	Зу:		Pack:	NA			From:	-To:
Drilling Co	o.: J	CA	Drill	er. g	S. Berg	ger	Seal:	NA			· From:	-To:
Method:	Mud	Rotary	Equ	ipmen	t: C	ME Truck Rig		NA	Z	\overline{ZZ}	From:	-To:
Boring De	epth:	22 ft.	Gro	und Si		Elevation:7.99	••••	asing: NA				
Initial GW	Level:	6.0 ft.	GW	Level	NA	Time/Date N	Outer C	asing/Stick Up:	NA			
Depth Sample	Явсочегу	Blow Count	Headspace ppm	Lithology		-	Description			Remar	ks	Well Construction
	}							:			,	
12-	2*	1,1,1,1			12-14	ft Dark bro organic		lack peat and			-	NA
14-	18"	5,5,9,10	2		14-16		s previous gray-brov ling coars	3 d		-		
16-	16*	9,10,14,18	0		16-18			ray well sorted d, trace silt, we				
18-	10*	21,18,16,14	0		18-20			e fine rounded				
20-	14"	6,6,5,7	0		20-22	ft Medium trace ler moist to	ises of fin	ay stiff silty clay e sand, very	·.			
22			,									
24							······································					

Boring/Well: WO#: L7905.03.01 SB-7 Standard Chlorine Chemical Company, Inc. 'roject: Focused Remedial Investigation Date Completed: Screen: Date Started: 8/16/96 8/16/96 NA From: -To: Pack: Logged By: F. Nemec Checked By: From: NA -To: Seal: Drilling Co.: Driller: S. Berger From: -To: NA **JCA** Grout: NA Method: Equipment: ATV Portable Rig From: -To: Mud Rotary Ground Surface Elevation: 4,17 ft. Inner Casing: NA Boring Depth: 18 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date NA 3.0 ft. NA Lithology Recovery Sample Well **Blow Count** Remarks Description Construction 0. Medium reddish-brown silt and 10" 3,2,2,2 3 0-2 ft. -NA fine sand fill, frequent fine to coarse angular gravel, moist. 16" 10,6,5,4 3 2-4 ft. -Same as previous to 3 ft.; 3-4 ft. Black fine to coarse sand fill, freq. cinders, some fine gravel, wet, with occasional fine brick fragments. 6 3,2,2,2 2* 10 4-6 ft. -Black cinders, wet, distinct odor. 3,2,3,6 7 6-8 ft. -Dark gray to black fine sand and 18" 6 silt fill, loose, wet and saturated with product (oily sheen), low odor. 5 Medium to dark gray silt and fine 14" 6,5,6,8 8-10 ft. -8 sand fill, trace fine grave/cinders, wet, oily sheen becoming less evident with depth within silt. 0" 10-12 ft. - No recovery. 3,1,2,3 10

EK												-			
Client	Stand	dard Chlorine (Chem	nical (Compa	ny, Inc		WO#:	L790	5.03.01		Borir	ıg∕Well:	SB-7	
rojec	t: Focus	sed Remedial	nves	tigati	on										
L	Started:	8/16/96	Date	e Com	ipleted:	8/	16/96	Screen	:	NA			From:	-To:	
Logge	^{id By:} F. I	Nemec	Che	cked	Ву:			Pack:		NA			From:	-To:	
Drilling	g Co.:	JCA	Drill	er:	S. Berg	ger		Seal:		NA			From:	-То:	
Metho	d: Mud	d Rotary	Equ	ipmer	^{it:} AT	V Porta	able Rig	Grout:		NA	\overline{Z}	\overline{Z}	From:	-To:	
Boring	Depth:	18 ft.	Gro	und S	urface l	Elevatio	^{n:} 4,17 ft.	Inner C	asing:	NA					
Initial (itial GW Level: 3.0 ft. GW Level: NA Time/Date								A Outer Casing/Stick Up: NA						
Depth	Sample Recovery And ppm Lithology							scription	1		F	Rema <i>i</i>	ks	Well Construction	
12-	10*	2,4,4,3	7		12-14	S	ark gray and and s ith an oil	silt, wet,	, satu			-	- - -	NÄ	
14	12*	15,15,15,16	8		14-16	S	ledium bi and, trace neen.						-		
16-	6-	6,9,8,10	4		16-18					ayey silt, ises, moist.					
20-													-		
22-											-				
24															

EF	RM	L					•					rage 101
Clier	nt:	Standa	ard Chlorine C	Chem	ical (Compa	ny, Inc.	WO#: L	7905.03.01	Bor	ing/Well:	SB-8
roje	ect:	Focuse	ed Remedial I	nves	tigati	on						
Date	Star	ted:	8/5/96	Date	Com	pleted:	8/5/96	Screen:	NA		From:	-To:
Logg	ed B	у: F. N	emec	Che	cked	Ву:		Pack:	NA		From:	-To:
Drilli	ng Co	o.: JC	A	Drille	∋r. ્	S. Berg	er	Seal:	NA		From:	-To:
Meth	od:	Mud	Rotary	Equi	pmen	t: CI	ME Rig	Grout:	NA		From:	-To:
Borir	ıg De	pth:	18 ft.				levation: 4.53 ft	Inner Cas	ing: NA			
Initia	IGW	Level:	2.0 ft.	GW	Level	: NA	Time/Date NA	Outer Cas	ing/Stick Up:	NA		
Depth	Sample	Recovery	Blow Count	Невазрасе ррт	Lithology		D	escription		Rema	arks	Well Construction
0		14°	12,14,21,22 10,12,14,14	3		0-2 ft. 2-4 ft.	fill, some f to 1.0 ft.; coarse sa fine angula very moist	ine angula 1.0-2.0 ft. nd and cin- ar and roud , dense.	o coarse sand r gravel, moist, Black fine to der fill, some nded gravel, rrse sand and I, wet, dense.			NA
4 —		6*	6,10,12,20	5		4-6 ft	Same as p	revious, v	vet.		1 1 1 1 1	
6 -		14"	4,2,2,2	9	,	6-8 ft	some fine	sand, occ ces, wet, t	ay clayey silt, asional black o 7.5 ft.; 7.5-8 at.		- - - -	
8 —		0"	6,8,8,9			8-10 f	t No recove	ery.			- - - -	
10-		10"	3,4,7,9	7		10-12	ft Dark brov mat and c				-	
12-											_	

E	RM	l											Page 2 ofZ_
Clie	nt:	Standa	ard Chlorine (Chen	nical (Compa	ıny, İr	nc.	WO#: _ L7	905.03.01	В	oring/Well:	SB-8
ro	ject:	Focus	ed Remedial	Inves	tigati	on							
Dat	e Star		8/5/96			pleted:	{	8/5/96	Screen:	NA		From:	-To:
Log	ged B	y: F. N	emec	Che	cked	Ву:			Pack:	NA		From:	-To:
_	ling C		CA	Drill	er:	S. Berg	ger		Seal:	NA		From:	-То:
Met	hod:	Mud	Rotary	Equ	ipmer	it: C	ME F	lig	Grout:	NA	777	From:	-To:
Bor	ing De	pth:	18 ft.	Gro	und S	urtace f	Elevat	^{ion:} 4.53 ft.	Inner Casin	g: NA			
Initia	al GW	Level:	2.0 ft.	GW	Level	: NA	Time	/Date NA	Outer Casir	ng/Stick Up:	NA		
Depth	Sample	Recovery	Blow Count	Handapace	Lithology			De	scription		Rei	narks	Well Construction
12-		6"	4,4,5,8	15		12-14		Dark gray sorted, trac slight shee	ce/little silt,	poorly wet,		-	NA
14-		14"	16,17,22,18	4		14-16 ft Light to medium brown-gray fine sand, poorly sorted, wet, trace silt to 15 ft.; 15-16 ft. Medium reddishgray clayey silt, varved, with trace fine sand lenses, moist.							
16		16"	12,12,12,9	2		16-18						.]	
18-												-	
-												1	
											ļ]	
-					,					•		4	
20-	-											4	
-]		,									-	
_	1											1	
-]]	
22-												_	
												-	
-												4	
							•			18-		-	
۔ امرا													į
24]					,							

EKIV.	<u>. </u>													
Client:	Standa	ard Chlorine	Chem	nical	Compa	ny, Inc.	WO#:	L7905.03.0	1	Boring/Well:	SB-9			
,'roject:	Focus	ed Remedial	Inves	tigat	ion						,			
Date Star		8/12/96	Date	Con	npleted:	8/12/96	Screen	NA		From:	-To:			
Logged E	y: F. N	emec	Che	cked	Ву:		Pack:	NA	<u>₩</u>	From:	-To:			
Drilling C	o.: J(CA	Drill	er:	S. Berg	jer <u>.</u>	Seal:	NA		From:	-To:			
Method:	Mud	Rotary				Portable Rig	Grout:	NA	Z	From:	- To:			
Boring De	pth:	16 ft.	Grou	und S	urface E	levation: 4.50 ft.	Inner C	asing: NA						
Initial GW	tial GW Level: NA Time/Date N							A Outer Casing/Stick Up: NA						
Depth Sample	Sample Recovery Medapece ppm Lithology						scription		F	Remarks	Well Construction			
0 -	18*	3,4,5,5	30		0-2 ft.	fine to coa	rse san rse ang ary mois	silt fill, some d, occasiona ular gravel, t, very strong	1		NA			
2 -	18*	4,8,9,9	100		2-4 ft.	ft. Dark gre to coarse	een-gray sand an ivel, wel	, wet to 3 ft.; y and black f d cinders, so t, very strong	ine me	-	-			
4 —	14"	5,5,6,7	150		4-6 ft.	gravel and with a stro	cinder ng solve moist fr	om 5.5-6 ft. v		·				
6 -	0"	2,2,2,2			6-8 ft.	- No recove	гу.			-				
8	12"	1,1,1,1	20		8-10 ft.			ow mat, som solvent odor,		- - - -				
10-	18"	5,5,4,4	1		10-12 fi	clayey silt, 10 to 11.5 l	very mo t.; 11.5-	sand and oist to wet fro 12 ft. Gray fi ittle silt, wet.						
'			ľ											

300 Phillips Boulevard, Suite 200 Ewing, New Jersey 08618

Page 2 of 2

ERM	L													Page 2 of2_
Client:	Standa	ard Chlorine (Chem	nical (Compa	ny, I	nc.	WO#:	L790	5.03.01		Boring	g∕Well:	SB-9 ·
roject:	Focuse	ed Remedial	Inves	tigati	on									
Date Star		8/12/96			pleted:		8/12/96	Screen:		NA			From:	-To:
Logged E	y: F. N	lemec	Che	cked	Ву:			Pack:		NA	28		From:	-To:
Drilling C	ი.: ე(CA	Drill	er: ,	S. Berg	ger		Seal:		NA			From:	-To:
Method:	Mud	Rotary	Equ	ipmer	t: AT	/ Po	rtable Rig	Grout:		NA	Z	\overline{Z}	From:	-To:
Boring De	pth:	16 ft.	6 ft. Ground Surface Elevation: NA							NA				
Initial GW	Level:	evel: 2.0 ft. GW Level: NA Time/Date N							NA Outer Casing/Stick Up: NA					
Depth Sample	Recovery	Blow Count	Hosdspace Mpm	Lithology			De	escription			А	lemark	s	Well Construction
12-	18*	4,6,12,14	1.5		12-14	ft	Gray with medium s				mental designation of the control of			NA
14-	16"	12,13,15,18	10		14-16	14-16 ft Medium gray intervals of wet fine to medium sand and clayey silt grading to medium gray clayey silt/silty clay with fine sand lenses. Sand intervals from 14-15.5 ft. contain a sheen on water.							-	
18					·					,			- - -	
										,			-	
20-		·	,											
24-														-

النظ	CM	L										rayeror
Clier	Client: Standard Chlorine Chemical Company, Inc.							WO#:	L7905.03.01	Bori	ng/Well:	SB-10
roje	ect:	Focus	ed Remedial	Inves	stigat	ion						
Date Started: 8/16/96 Date Completed: 8/16/96								Screen:	NA NA		From:	-To:
Logg	Logged By: F. Nemec Checked By:								NA		From:	-To:
Drillin	ng Co	o.: J	CA	Drill		S. Berg		Seal:	NA		From:	-To:
Meth	od:	Mud	Rotary	Equ	ipme	^{nt:} AT\	/ Portable Rig	Grout:	NA	7777	From:	-To:
Borin			18 ft.				levation: 4.19 ft.		asing: NA			<u> </u>
Initial	GW.	Level:	3.5 ft.	GW	Leve	I: NA	Time/Date NA	Outer C	asing/Stick Up:	NA .		
Depth	Sample	Явсоvегу	Blow Count	Headspace ppm	Lithology		De	scription		Rema	rks	Well Construction
0-		16*	11,21,32,28	20		0-2 ft.	 coarse sar rounded gr 2 ft. Black cinders, so angular gr 	nd, and the ravel, we fine to come fine to come fine avel, ver	ill, with fine to fine to coarse et, to 0.5 ft. 0.5- coarse sand, to coarse ry moist with a ks are located			NA
) -) - -		20*	14,17,15,13	3		2-4 ft.		nd, wet v	ome fine to with a sheen		- - - -	·
4 —		14"	7,6,8,4	3		4-6 ft.	- Same as p sheen.	revious,	, wet with a		<u>-</u>	
6 - 1		6"	4,3,3,3	2		6-8 ft.	- Same as pi sheen,	revious,	wet with a		-	
8 —		0"	1,1,1,1			8-10 ft	No recover	y .			_ 	
10-		14*	1,1,1,2	0.00		10-12 f	organic silt 11.5 ft.; 11	, very m .5-12 ft.	noist to		-	

Boring/Well: WO#: Client: L7905.03.01 SB-10 Standard Chlorine Chemical Company, Inc. 'roject: Focused Remedial Investigation Screen: Date Started: Date Completed: NA From: -To: 8/16/96 8/16/96 Pack: Checked By: Logged By: F. Nemec NA From: -To: Driller: - S. Berger Seal: Drilling Co.: **JCA** From: -To: NA Grout: NA Method: Equipment: From: **Mud Rotary** ATV Portable Rig -To: Ground Surface Elevation: 4.19 ft Inner Casing: NA Boring Depth: 18 ft. Initial GW Level: GW Level: Time/Date Outer Casing/Stick Up: 3.5 ft. NA NA Recovery Lithology Sample Well **Blow Count** Description Remarks Construction 12-14 ft. - Dark gray and black fine sand, 12-7,7,8,8 14" 15 NA some silt, wet, fingers of DNAPL observed throughout sample. Same as previous, DNAPL 14-16 ft. -20" 6,6,7,7 15 concentrations increasing with depth. Beginning at 15.5 ft., sand is becoming medium brown, coarser, with significantly less DNAPL observed. 10" 9,11,13,13 16-18 ft. - Medium brown fine to medium 20 sand, wet, continual saturation with DNAPL to 16.5 ft.; 16.5-18 ft. Medium gray silt, trace clay, trace fine sand (lenses), dry to damp. 20-

Boring/Well: Client: WO#: L7905.03.01 SB-11 Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Started: Date Completed: 8/6/96 8/6/96 NA From: -To: Pack: Logged By: Checked By: NA From: -To: F. Nemec Seal: Driller: Drilling Co.: S. Berger From: JCA NA -To: Grout: Equipment: NA Method: **Mud Rotary** CME Rig From: -To: Ground Surface Elevation: 3.56 ft. Inner Casing: NA Boring Depth: 16 ft. Outer Casing/Stlck Up: Initial GW Level: GW Level: Time/Date NA NA 8.0 ft. Lithology Recovery Sample Headspace ppm Well **Blow Count** Remarks Description Construction 0 -12" 6,6,7,6 0-2 ft. -Orange-brown fine to medium 1 NA sand and silt fill, trace fine gravel, moist, to 1.0 ft.; 1-2 ft. Dark brown silty clay, fine to coarse sand and gravel fill, very moist. 24" 15 3,4,6,6 2-4 ft. -Dark brown fine to medium sand fill, some silty clay, some fine rounded gravel, very moist with sheen on soil. 24" 19,20,31,40 4-6 ft. -3 Brown fine to medium sand fill, some silty clay, some fine rounded gravel, moist. 12" Same as previous to 7 ft.; 7-7.5 ft. 14,16,12,4 6-8 ft. -3. Black organic silt and peat; 7.5-8 tt. Wood pieces (from meadow mat), very moist. 0" 4,10,9,12 8-10 ft. -8 No recovery. 10-12 ft. - Dark gray fine to medium 14" 7,8,9,9 fairly well sorted sand, little siit, wet. 12-

300 Phillips Boulevard, Suite 200 Ewlng, New Jersey 08618

Page 2 of __2___

ERM				Page 2 of2_
Client: Standard Chlo	ne Chemical Company, Inc.	WO#: L7905.03.0	1 Boring/Well:	SB-11
roject: Focused Rem	dial Investigation			
Date Started: 8/6/96	Date Completed: 8/6/	96 Screen: NA	From:	-To:
Logged By: F. Nemec	Checked By:	Pack: NA	From:	-To:
Drilling Co.: JCA	Driller: S. Berger	Seal: NA	From:	-To:
Method: Mud Rotary	Equipment: CME Rig	Grout: NA	From:	-To:
Boring Depth: 16 ft.	Ground Surface Elevation:			
Initial GW Level: 8.0 f	GW Level: NA Time/Da	te NA Outer Casing/Stick Up	^{p:} NA	
Depth Sample Recovery on	Headspace ppm Lithology	Description	Remarks	Well Construction
12- 10" 9,10,10 14- 12" 9,11,13 16- 18- 12- 12- 12- 12- 12- 12- 12- 12- 12- 12	13 15 14-16 ft Sai 15- DN	with fine to medium fairly a sorted sand, trace sitt, we have as previous to 15.5 ft. w 15.5 ft. interval saturated w APL. 15.5-16 ft. Medium graph clayey sitt, damp to moist.	ith —	NA

Boring/Well: WO#: Client: L7905.03.01 SB-12 Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Completed: Date Started: NA From: -To: 8/7/96 8/7/96 Pack: Logged By: F. Nemec Checked By: NA From: -To: Seal: Drilling Co.: Driller: S. Berger From: -To: NA **JCA** Grout: Equipment: NA Method: **CME Rig** From: -To: **Mud Rotary** Ground Surface Elevation: 6.63 ft Inner Casing: NA Boring Depth: 18 ft. Outer Casing/Stick Up: Time/Date Initial GW Level: GW Level: NA NA 3.5 ft. Recovery Lithology Headspace ppm Sample Well **Blow Count** Remarks Description Construction 0 -6" Orange-brown silt and fine to 7,1,2,3 0 0-2 ft. -NA medium sand fill, some fine to coarse angular gravel and cinders, damp. Medium to dark gray fine to coarse 3,2,2,2 22" 0 2-4 ft. sand fill, some fine to coarse gravel, some silt, moist, becoming wet at 3.5 ft. 24" 8,6,10,12 0 4-6 ft. -Same as previous, wet. Same as previous to 7.5 ft.; 7.5-8 18" 4,8,9,11 6-8 ft. -1 ft. Gray silty clay fill, some medium to coarse sand, trace fine gravel, wet. 24" 6,10,11,12 8-10 ft. -1 Medium gray fine to medium sand fill, some clayey silt, with white and green fine angular gravel throughout, wet. Same as previous to 10.5 ft., 24" 10-12 ft. -4,4,3,4 10 grading to dark gray silty organic clay from 10.5-11 ft., soft, very moist. 11-12 ft. Dark brown peat (meadow mat) with some black staining from the organic clay, moist.

Boring/Well: WO#: SB-12 Client: L7905.03.01 Standard Chlorine Chemical Company, Inc. Focused Remedial Investigation Screen: Date Completed: Date Started: NA From: -To: 8/7/96 8/7/96 Pack: Checked By: Logged By: F. Nemec NA From: -To: Seal: Drilling Co.: Driller: From: -To: S. Berger NA **JCA** Grout: NA Equipment: Method: From: -To: **CME Rig** Mud Rotary Ground Surface Elevation: 6.63 ft Inner Casing: NA Boring Depth: 18 ft. Outer Casing/Stick Up: Time/Date Initial GW Level: GW Level: NA 3.5 ft. Lithology **Recovery** Headspace ppm Well Sample **Blow Count** Remarks Description Construction 12-14 ft. - Dark brown peat (meadow mat), 12-2" 1,1,1,1 NA little dark gray organic silt, moist. 14-16 ft. - Same as previous to 15 ft.; 15-16 18" 5,5,9,10 ft. Light gray-brown fine sand and silt, grading coarser with depth, wet. 16-18 ft. - Medium reddish-gray well sorted 16" 9,10,14,18 0 16 fine to coarse sand, trace silt, wet. 18-20 ft. - Medium yellow-brown fairly well 10" 21,18,16,14 0 18 sorted fine to medium sand, trace fine rounded gravel, trace silt, wet. 14" 20-22 ft. - Medium brown-gray silty clay, 6,6,5,7 0 20 trace lenses of fine sand, very moist to wet.

Boring/Well: Client: WO#: L7905.03.01 SB-13 Standard Chlorine Chemical Company, Inc. 'roject: Focused Remedial Investigation Date Started: Date Completed: Screen: 8/12/96 8/12/96 NA From: -To: Pack: Logged By: Checked By: F. Nemec NA From: -To: Driller: Drilling Co.: Seat: JCA-S. Berger From: NA -To: Grout: Method: Equipment: NA CME Truck Rig Mud Rotary From: -To: Ground Surface Elevation: 4.27 Inner Casing: NA Boring Depth: 16 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date 3.0 ft. NA **Весо** Весои Lithology Headspace ppm Sample Well Blow Count Remarks Description Construction 0 -0" 5,3,1,2 0-2 ft. -No recovery. NA 10" 2,1,1,1 Dark brown fine to coarse sand fill, 2-4 ft. -0 some fine to coarse angular gravel, some silt, wet beginning at 3 ft. Same as previous to 5.5 ft.; 5.5-6 ft. 14" 10,27,8,3 4-6 ft. -1 Dark reddish orange silty clay and fine to coarse sand fill, some fine angular gravel, wet. 8" 3,4,4,4 6-8 ft. -Black fine to coarse sand, gravel, 6 and cinder fill, wet to 7.5 ft.; 7.5-8 ft. Black peat and organic silt (meadow mat), wet. 10" 3,3,2,2, 8-10 ft. -8 Brown to dark brown same as previous, very moist. 12" 10-12 ft. - Same as previous to 11.5 ft., 3,3,3,4 10wet; 11.5-12 ft. Medium gray clayey silt and fine sand, wet.

Boring/Well: WO#: L7905.03.01 SB-13 Standard Chlorine Chemical Company, Inc. 'roject: Focused Remedial Investigation Date Started: Screen: Date Completed: 8/12/96 NA 8/12/96 From: -To: Pack: Logged By: Checked By: F. Nemec NA From: -To: Seal: Drilling Co.: Driller: **JCA** S. Berger NA From: -To: Grout: Method: Equipment: NA: **Mud Rotary** CME Truck Rig From: ·-To: Ground Surface Elevation: 4.27 Inner Casing: NA Boring Depth: 16 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date 3.0 ft. NA Recovery Lithology Sample Well Blow Count Description Remarks Construction 12-14" 12-14 ft. - Medium to dark gray poorly 8,11,11,13 NA sorted fine sand, some silt, wet. 18" 10,10,27,13 3 14-16 ft. - Same as previous to 15.5 ft., from 14-15.5 ft. the sand is micaceous and grading siltier with depth.; 15.5-16 ft. Medium reddish gray clayey silt/silty clay, occasional lenses of fine sand, moist to 16 damp. 18 20

Boring/Well: Client: WO#: L7905.03.01 SB-14 Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Started: Date Completed: NA From: 8/7/96 8/7/96 -To: Logged By: Pack Checked By: F. Nemec NA From: -To: Seal: Drilling Co.: Driller: S. Berger From: JCA NA -To: Grout: Method: Equipment: NA Mud Rotary -CME Truck Rig From: ... -To: Ground Surface Elevation: 7.44 ft Boring Depth: Inner Casing: NA 20 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date 5.5 ft. NA Recovery Lithology Headspace ppm Sample lleW Depth **Blow Count** Remarks Description Construction Orange-brown fine sand fill, little 0 -20" 0-2 ft. -3,4,4,4 0 NA silt, trace fine gravel, dry to damp, to 1.0 ft.; 1-2 ft. Dark reddish-brown and green silt and fine to medium sand fill, trace fine angular gravel, moist. Same as previous, moist. 14" 4,5,5,5 0 2-4 ft. -24* 5,5,5,5 0 4-6 ft. -Same as previous, becoming wet at 5.5 ft. 6,8,10,12 Same as previous, wet. 24" 0 6-8 ft. -6 16" 8,6,5,3 8-10 ft. -0 Same as previous, wet to 9.5 ft.; 8 9.5-10 ft. Dark brown peat, some organic silt (meadow mat), moist. 0" 10-12 ft. -3,3,3,3 No recovery. 10-

Boring/Well: WO#: Client: L7905.03.01 SB-14 Standard Chlorine Chemical Company, Inc. roject: Focused Remedial Investigation Screen: Date Started: Date Completed: 8/7/96 8/7/96 NA From: -To: Pack: Checked By: Logged By: F. Nemec NA -From: -To: Seal: Drilling Co.: Driller: S. Berger From: **JCA** NA -To: Grout: Method: Equipment: NA Mud Rotary · CME Truck Rig From: -To: Ground Surface Elevation: 7,44 ft Inner Casing: NA Boring Depth: 20 ft. Outer Casing/Stick Up: Initial GW Level: GW Level: Time/Date 5.5 ft. NA Recovery Lithology Headspace Well **Blow Count** Remarks Description Construction 12-14 ft. - Dark gray-brown peat, some 12 16" 2,1,9,10 NA organic silt (meadow mat) to 13.5 ft.; 13.5-14 ft. Light greenish-gray fine sand, little silt, wet. 14-16 ft. - Same as previous to 15.5 ft; 15.5 -16" 8,10,11,12 2. 16 ft. Light reddish-gray fine to medium sand, poorly sorted, some silt, very moist to wet. 24" 7,8,12,8 3 16-18 ft. - Light reddish-brown fairly well-16 sorted fine to medium sand, little silt, trace fine rounded gravel, wet. 18" 8,12,16,20 18-20 ft. - Same as previous to 19 ft.; 19-20 2 18ft. Medium brown clayey silt/silty clay with trace fine sand lenses, very moist. 20-

March 2008

KEY ENVIRONMENTAL, INC. SUPPLEMENTAL REMEDIAL INVESTIGATION (1999)

Construction ADA Association Consumination		Site ID: SC-S	315	Location: Standard Chlorine Chemical Co.	
Logged By: TEJ Logg	MENVIRONMENTAL .	Contractor: JC	A Associates	Ground Surface Elevation (ft-msl): 5.37'	
Section Sect	INCORPORATED	Consulting Fir	m: Key Environmental	Datum: Mean Sea Level	
Drilling Method: Hollow Stem Auger Wall Construction Moterials: M/A Supplemental Remedial Investment on STANDIARD CHILDRING COnstruction Standiard Description Borehole Construction Material Description Borehole Construction Borehole Construction Auger to 1', brown silly SAND, f grovel. Red sandy SLT, some f-m grovel, moist. SS15-S5 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Logged By: TE	J	Date(s): 01/14/99 - 01/14/99	
Section Sect	Type: Soil Boring			Riser Casing:	
Meterial Description Supplemental Revenue Investigation Revenue Investigation Revenue Investigation Supplemental Revenue Investigation Rev	Drilling Method: Hollow Stem Auger				
SSIS-SS 1 SSIS-S	Well Construction Materials::				
S815-S1 5 S815-S2 14 17 18 22 S815-S3 2 O ppm Red sandy SILT, same f-m gravel, wet. Red sandy SILT, same f gravel, yellow silty nodules. Gray green SAND and SILT, same f gravel, yellow silty nodules. Gray green SAND and SILT, same f gravel, yellow silty nodules. Gray green SAND and SILT, same f gravel, yellow silty nodules. Dork brown SILT, same sand, vegolative moti present, H2S noted. Gray green sandy SILT, grades to clayey SILT at base. Gray to black f-m SAND, little silt, trace gravel. Gray stained black f-m SAND, little silt, trace f gravel. Gray stained black f-m SAND, little silt, trace f gravel. Red brown sandy SILT, trace clay.	N/A			STANDARD CHLORINE CHEMICA	
Auger to 1', brown silty SAND, f grovel. S815-S2 14 17 18 22 S815-S3 2 0 ppm S815-S4 5 0 ppm S815-S5 1 13 3 6 S815-S5 1 3 3 6	Elevation (ft-msl) Depth (ft-bgs) Recovery Sample No. Blow Count	USCS Code PID (ppm)	Graphic Log	Material Description	Borehole Construction
	SB15-S2 14 17 18 22 SB15-S3 2 24 4 4 SB15-S4 5 9 66 9 SB15-S5 1 13 2 2 SB15-S6 1 3 6 SB15-S7 9 13 13 16 SB15-S8 3 12 15 17 14	O ppm O ppm O ppm HH O ppm O ppm O ppm O ppm O ppm O ppm	Red so Red so Gray g	ndy SILT, some f-m gravel, moist. Indy SILT, yellow and black f-m gravel, wet. Indy SILT, yellow and black f-m gravel, wet. Indy SILT, yellow and black f-m gravel, wet. Indeen f-c SAND, some silt. Indeen SAND and SILT, some f gravel, yellow silty nodules. Indeen SAND and SILT, some f gravel, yellow silty nodules. Indeen SAND and SILT, some f gravel, yellow silty nodules. Indeen SAND, some sand, vegatative matt present, H2S noted. Indeen sandy SILT, grades to clayey SILT at base. Indeed black f-m SAND, some silt, trace gravel. Indeed black f-m SAND, little silt, trace f gravel.	

		_	•		Site I	D: SC-SE	316		Location: Standard Chlorine Chemical Co.	
		ENVIR	ONME	NTAL	Contro	actor: JC/	A Associates		Ground Surface Elevation (ft-msl): 5.01'	
Consulting Firm: Key Environmental								Dotum: Mean Sea Level		
- Logged By: TEJ									Date(s): 01/14/99 - 01/14/99	· · · · · · · · · · · · · · · · · · ·
Type: S	oil Borin	g		·				· · · · · · · · · · · · · · · · · · ·	Riser Cosing: N/A	
			Stem Au	ger					Screens:	
	onstructi	on Mote	riols::						N/A	
N/A		1		-		1	Γ		SUPPLEMENTAL REMEDIAL INVESTI STANDARD CHLORINE CHEMICAL KEARNY, NEW JERSEY	GATION CO.
Elevation (ft-msl)	Depth (ft-bgs)	Recovery	Sample No.	Blow Count	USCS Code	PID (ppm)	Graphic Log	- .	Material Description	Borehole Construction
					FI			Augus 1º fra	zen gravel, brown gray f-m SAND, f gravel and green sond present.	
	-	ž .	SB16-S1	5		0 ppm		-		
			SB16-S2	, 3 5	,			erown gray i	f-m SAND, no green sond/gravel present, wet at 2'.	
	-			9		0 ppm		_		
	-		SB16-S3	12				Brown gray 1	f-c SAND, some f-m gravel, wet.	
0				12 14		0 ppm				
	-		SB16-S4	14 4				Red-brown f	-c SAND, some f gravel, yellow staining on gravel.	
	-			4 4		0 ppm		Dark brown :	sandy SILT, with vegatative matt present.	
	-		SB16-S5	3 3	PT [.]					
	-			2 2 3		0 ppm		Dork brown	sandy SiLT, with vegatative mott present.	
	10-		SB16-S6	-				Dork brown	sandy S.H.T., with vegatative mott present.]
	_			2 3	МL	0 ppm		Gray green s	sandy SILT, same f sand, little clay.	
	-			3	SM	о ррии				
	_		SB16-S7	10				Gray brown t	f-m SAND, some silt, grades to f-c SAND at base.	
	_			14 15		0 ppm			•	
	_		SB16-S8	i7 i				Gran hzown i	f-c SAND, some f gravel.	
-10				13 14		0 ppm		,	f-c SAND, some f grovel.	
	-		SB16-S9	9 10	,			-	i varved clayey SILT, some i sond.	
	-			12	CL	0 ppm		DIONN 10 161	i varvea crayey sici, some i sano.	
	-	2		,			Z _Z _ Z			1
	-									
	20-									
	-									
	-								·	
	_									

			<u>.</u>		· T ==:				T	
ţ<	AESTA E					D: SC-M			Location: Standard Chlorine Chemical Co.	
							A Associates		Ground Surface Elevation (ft-msl): 8.00'	
		, rowers	-CAT				m: Key Environn	nental	Dotum: Meon Sea Level	
<u> </u>					Logge	d By: TE	J		Date(s): 01/13/99 - 01/18/99	
	: Well								Riser Casing: type: PVC dia: 2.00in fm	: -0.2' to: 13.20'
	ing Method			iger & F	Tuid Rote	ary			Screens:	
type	Construct Bentonite :	Grout :	erials::			n: 0.001	to: 10.		7,	: 13.17' to: 18.17'
type	: Bentonite : Sand Filt	er			fr	n: 10.40' n: 12.33'	to: 18.	17'	SUPPLEMENTAL REMEDIAL INV STANDARD CHLORINE CHEM	ICAL CO.
	: Bentonini		5	Τ	fı	m: 18.17			KEARNY, NEW JERSE	Y
										Well Construction
) (FE										
Elevation (ff-msl)	Depth (ft-bgs)		9	E	쁑	<u>څ</u>	60]		Material Description	
ation	# # # # # # # # # # # # # # # # # # #	Rесоvегу	Sample No.	Blow Count	USCS Code	PiD (ppm)	Graphic Log			MP. EL. 7.82
å	Dep	Rec	1 -	BB		2	Gra	•		17:11
			16L-S1	1 3	FI			Dark brown	sandy SILT, roots/vegatative material.	
				7 7		0 ppm			• • •	
			16L-S2	3 3					silty f-m SAND, and f-m gravel, gloss frags, moist.	
F		1/		3		0 ppm		}	silly f-m SAND, and f-m gravel, red sandstone rock frags, wet.	
			16L-S3	5 5				Brown f-c S	SAND, little f gravel, trace silt, black	
	_			9 27		0 ppm		organic stair	ning present along harizontal seams, wet.	
			16L-S4	13 3				Red brown f	i-c SAND, and grovel, some sill, wet.	
7		_	101 34	4		0 ppm				
-0				3		o ppiii		Brown f-m	SAND, some f gravel, little silt.	
			1 <i>6</i> L-S5	3 3				Black sondy	SILT, with vegatative mall present, (meadow mat).	
				1		0 ppm				
	10-		16L-S6	4	PT			N	CRT - St	
		1/		4		0 ppm		Block sandy	SAT, with vegatotive mall present, (meadow mot).	
			16L-S7	4 2 3	SW		0 0			800
F		-		3 7	;	0 ppm		Brown f-m	SAND, some silt, some f-m grove).	
İ			16L-S8	8 q		''	0 0	Brown f-m	SAND, some silt, some f-m grovel.	
	_		102-30	9 12 14		0	0 0	Gray brown t	f-m SAND, little silt, trace f grave).	
]	17		0 ppm				
			16L-S9	11 18 15 11				Grav fm C	WD, little silt.	
		1/		15 11		0 ppm	0 0	ouch t⊾liigh	ישוען וושפ פונג.	
1	0		16L-S10	6	ML					000 000
	-		-	8		0 ppm		Red brown c	łoyey SILT, some f sond, varved.	20202020
	20-	-								
	.	-			ĺ					
	.						ļ			
L										
7					ļ					
		1								
		1	1			l				Page 1 of 1
L										

	Site ID: SC-MW-17L	Location: Standard Chlorine Chemical Co.
A MENVIRONMENTAL	Contractor: JCA Associates	Ground Surface Elevation (ft-msi): 4.13'
INCORPORATED	Consulting Firm: Key Environmento	Datum: Mean Sea Level
	Logged By: TEJ	Date(s): 01/13/99 - 01/19/99
ype: Well		Riser Casing:
Drilling Method: Hallow Stem Auger & Fl	uid Rotary	type: PVC dia: 2.00in fm: -0.3' to: 13.66'
Well Construction Materials:: ype: Bentonite Grout	fm: 0.00° to: 10.50°	Screens: type: Slotted size: 0.010in dia: 2.00in fm: 13.66' to: 16.66'
ype: Bentonite Pellets ype: Sand Filter #00 ype: Sand Filter #0	fm: 10.50' to: 12.50' fm: 12.50' to: 13.00' fm: 13.00' to: 16.66'	SUPPLEMENTAL REMEDIAL INVESTIGATION STANDARD CHLORINE CHEMICAL CO. KEARNY, NEW JERSEY
Elevation (ft-msl) Depth (ft-bgs) Recovery Sample No. Blow Count	on)	Well Construction Moterial Description
	USCS Code PID (ppm) Graphic Lag	MP. EL. 3.87
0	O ppm O ppm O ppm O ppm O ppm O ppm O ppm O ppm O ppm O ppm SM SM O ppm O ppm SM SM O ppm O ppm SM SM O ppm O ppm SM SM O ppm O ppm SM SM O ppm	brown sandy SILT, roots/veg. matt, silty SAND, some clay. In fact SAND and SILT, trace clay. In fact SAND and gravel, trace silt, gravel is composed ell rounded white quartite, brick frags, wet. In real silty fam SAND, some f gravel, brick frags, wet. In fam silty SAND, some f gravel, brick frags, dark brown fam silty SAND, mott, some f gravel, brick frags, dark brown fam silty SAND, little silt, trace f gravel. In fact SAND, little silt, trace f gravel, odor noted, In mud tub. In fact SAND, little silt, trace f gravel. In silty CLAT to clayey silt, trace f sand.
-20		Poge 1 of 1

APPENDIX E HISTORICAL ANALYTICAL RESULTS

APPENDIX E HISTORICAL REMEDIAL INVESTIGATION DATA TABLE OF CONTENTS

Sample Location Map

E.1 Lagoon Sludge Data

- 1983-1984 Hydrogeologic Investigation
- 1985 Phase II Dioxin Site Investigation
- 1985-1988 Stage I, II, and III Dioxin Investigation
- 1990-1993 Remedial Investigation

E.2 Soil Data

- 1983-1984 Hydrogeologic Investigation
- 1985 Phase II Dioxin Site Investigation
- 1985-1988 Stage I, II, and III Dioxin Investigation
- 1991 Interim Remedial Measures Sampling
- 1990-1993 Remedial Investigation
- 1996-1997 Focused Remedial Investigation
- 1997-1999 Supplemental Remedial Investigation

E.3 Groundwater Data

- 1983-1984 Hydrogeologic Investigation
- 1990-1993 Remedial Investigation
- 1997-1999 Supplemental Remedial Investigation

E.4 Bedrock Groundwater Data

1997-1999 Supplemental Remedial Investigation

E.5 DNAPL Data

1996-1997 Focused Remedial Investigation

E.6 Surface Water/Sediment Data

- 1990-1993 Remedial Investigation
- 1996-1997 Focused Remedial Investigation
- 2000 Remedial Action Workplan
- 2002 EPA Superfund Contract Support Team Sampling Report

E.7 Transformer Area Data

- 1990-1993 Remedial Investigation
- 1997-1999 Supplemental Remedial Investigation

E.1 Lagoon Sludge Data

1983-1984 Hydrogeologic Investigation

Table 1-1
Summary of Soil Sample Metals Analyses Results SCCC, Kearny, NJ (1983)

		Total Ch	romium			1	EP Toxicity	Test Leachs	ıle		
Description	pH	Chromium mg/kg	Hexavalent Chromium mg/kg	As mg/l	Ba mg/l	Cd mg/l	Cr mg/l	Pb mg/l	lig nig/l	Se mg/l	Ag mg/l
1D: 5-7' fill	NA	150	טא	ND	0.81	ND	ND	ND.	ND	ND	ND
ID: Meadow mat	7.7	3	ND	ND	0.56	ND	CIN	ND	ND	NU	טא
1D: 15-16' sand	NA	6	. טא	ND	0.17	ND .	ND	ND	ND	ND	ND
2D: 5-7' fill	12.3	31.100	14.4	ND	0.68	ND	16	ND	ND	.0)8	ND
2D: Meadow mat	11.7	16,500	0.7	UN	0.019	ND	3.23	ND	ND	บบ	ND
2D: 13' silı	NA_	82	ND	ND	0.34	ND	NU	טא	ND	ND	ND
2D: 13-15' sand	NA	48	ND	ND.	0.15	ND	ND	เกก	ИD	ND	NU
3D: 2-3" fill	12.2	31,000	5.7	טא	0.62	ND	5.44	ŊŊ	ND	.017	ND
3D: 5-7' fill	11.4	745	ND	טא	0.51	ND	ND	ND	ND	ND	ND
3D: Meadow mat	8.2	9,9(x)	ИD	טא	0.54	ND	0.87	NO	טא	ИD	ND
3D: 12-13' sand	NA	10	טא .	מא	V.16	ND	ND	ND	שא	ИD	ND
4D: Meadow mat	8.1	770	ND	טא	0.46	ND	ND	ND	NU	ND	ND ·
4D: 15-17" send	NA	49	UИ	ND	0.19	ND	ND	ND	NU	ND	ND
4D: 15-17' sand	5.7	36	ND	ND	0.19	ทบ	ND	NI)	ปห	טא	ND
5D: 5-7° fill	12.2	18.000	38.0	ND_	0.43	ND	43.6	ND	ND	.013	ND
5D: Meadow mat	8.7	7.600	ND	טא	0.78	ทบ	3.08	ND	NU	ND	ND
5D: 17-19' sand	NA	12	ND	0.051	0.07	ND	0.41	ND	ND	ND	ND
Lagixin I	NA	7,700	ND	ND	0,30	ND	0.41	ND	ND	ND	ND
Lagoon 2	NA	6,400	מא	ND	0.11	ND	ND	ND	NU	ND	ND

ND = Not Detected NA = Not Analyzed 1985 Phase II Dioxin Site Investigation

Table 1-3

Results of Phase II Dioxin Investigation SCCC, Kearny, NJ

Sample Collection Date:

7 May 1985

Sample Analysis Date(s):

15, 16, and 17 May: 16 and 17 June 1985 Environmental

Testing and Certification Corporation, Edison, New Jersey

·	2.3,7,8-TC	DD (ppb¹)	
Sample Number	Measured	DL ²	Sample Type
1	ND ³	0.15	Surface soil
2	ND	0.60	Surface soil
3	ND⁰	0.037	Surface soil
4	ND	0.62	Surface soil
5	ND	0.42	Duplicate of Sample 4
6	ND	0.54	Surface soil
7	ND	0.67	Sediment
8	ND ·	0.23	Surface soil
9	ND	0.25	Field/equipment blank
10	ND	0.29	Surface soil
11	ND	0.16	Surface soil
12	0.524		Surface soil
13	ND	070	Surface soil
14	ND	0.62	Surface soil
15	ND	0.29	Surface soil
16	59.54		Sediment
17	5		Sediment
18	ND	0.11	Equipment blank
19	4.90		Proficiency

ppb = Parts per billion. i.e., µg/kg of soil or sediment on an "as is" basis.

DL = Method detection limit which is the concentration at which there is a 99 percent confidence level that the compound is present. ETC only reports detection limits for non-detect results.

ND = Not detected.

Repeat analysis, required for quality assurance review.

Repeat analysis unsuccessful - failed surrogate recovery.

Results of re-analysis by California Analytical Laboratories of West Sacramento, California, on 16 September 1985.

1985-1988 Stage I, II, and III Dioxin Investigation

Table 1-4

Summary of 2,3,7,8-TCDD Concentrations in Soil Samples Collected in August 1985 SCCC, Kearny, NJ

Sample	Depth (ft)	Detection Limit 2,3,7.8-TCDD (µg/kg)
Riverbank		
RB-2A	0-0.5	<0.07
RR-2C	1.5-2.0	<0.16
RR-3A	0-0.5	<0.10
RB-3B	1.5-2.0	<0.23
Lagoon Perimeter LB-1A	0-0.5	<0.05
LP-18	1,5-1,7	<0.12
LP-3	0.5-WT	<0.67
LP-3A	0-0,5	<0.02
LP-3C	3.5-4.0	<0.17
LP-4A	0-0.5	<0.16
LP4B	6.0-6.5	<0.15
LP-5A	0-0.5	<0.10
LP-SD	3.6-4.1	<0.0)
LP-6A	0-0.5	<0.03
LP-6B	0.5-WT	<0.05
LP-7A	0-0.5	<0.09
LP-7B	1.7-2.1	<0.38
Lagoon LD-1		3.1/9.6
EL-1	0-0.5	<0.10
EL-1D	0-0.5	<0.10
EL-3	0-0.5	62.1
WL-2	0-0.5	<75.5°/55,6°
WL-2D	0-0.5	45.2
Other Areas		5.0
10A	0-0.5	<0.23
12	1.5-2.0	<0.13
NY OF		<0.16
NJ-01 DP-1	**	<0.07
UP-1.	<u> </u>	CU.U 7

Note: Samples analyzed by Cal. Analytical. A. B. C. D indicate depths at the Riverbank, Lagoon Perimeter and Other Area locations. El-ID is a duplicate sample.

WT - Water table.

Chemical interferences.

b

■ Duplicate analyses.

Table 1-5
Stage I Analysis Summary
SCCC, Kearny, NJ

WESTON Sample Number	TCDD Measured (ppb)	TCDD Detection Limit (ppb)
Method Blank	ND	0.13
Method Blank	ND	0.092
S-1-SS	ND	0.41
R-1-SS	15.3	-
N-1-SS	ND	0.62
N-1-SS Dup	ND	0.49
L-1H-SS	0.71	. •
E-1	0,85	
1-1H	ND	1.1.
P-1-SS	ND	0.60
O-1-SS	ND	0.33
O-FP-SS	ND	0.53
O-FP-SS-NS	9.2	••
B-1	8.2	
1-1H	11.2	
STDCL-1A	ND ND	0.25
STDCL-1B	9.2	-
C-2H-SS	0.23	
C-2H-SS Dup	ND	0.45
M-1-SS	ND ND	0.36
K-1H-SS	69.6	
O-1-SS	ND	0.56
O-1-SS-NS	8.2	••
O-1D-SS	ND	0.26
Method Blank	ND	0.12
Method Blank	ND	0.20
SS-1 [*]	ND	1,1
SS-2	ND	1.4
F-1	#	*
G-1	2,8	
H-1	ND	0.73
D-1	ND	(),9()
T-1-SS	ND ND	0.23
A-1	2.6	
Method Blank	ND	0.034
T-2-SS	ND ·	0.21
S-2-SS	ND ND	0.076

Table 1-5 (continued)

WESTON Sample Number	TCDD Measured (ppb)	TCDD Detection Limit (ppb)
R-2-SS	62.1	40
E-2-SS	31.9	
N-2-SS	ND	0.18
O-2-SS	92	0,028
P-2-SS	ND	0,11
C-1	19.5	
C-1 Dup	16.3	
I-2-SS	3.2	
1-3-SS	38,4	
1-4-55	6.2	
D-2-SS	ND	0.053
G-2-SS	ND	0.12
B-2-SS	ND	0,11
M-2-SS	ND	0,084
K-2-SS	2.7	••
H-2-SS	ND .	0.13
A-2-\$\$	ND	1.5
O-2D-SS	. 20	0.089
STDCL-2B	3,5	••
Method Blank	ND	0.087
I-IH NS	1.3	
Method Blank	ND .	0.19
Method Blank	9,4	- Taran
WS-1	9.6	·
WS-2	ZD ZZ	0.61
Method Blank	. ND	0.17
Method Blank NS	9.6	
RS-1	0.14	
F-4-SS	4,3	
J-2-SS		.
J-3-SS	•	*
J-4-SS	4	\$

ND = Not Detected.

Note: The samples collected were lagoon sediments except for the following: STDCL indicates EPA performance test; SS-1, SS-2 were surface soils; WS-1 was a wipe sample, foundation: WS-2 was a wipe sample, blank.

Source: WESTON, 1987

^{* =} Results of this sample analysis not reported due to crystallization of liquid phase following extraction.

Table 1-6

Stage II and III Analysis Summary SCCC, Kearny, NJ

WESTON Sample Number	2,3,7,8-TCDD Measured (ppb)	2,3,7,8-TCDD Detection Limit (ppb)
Method Blank	ND	0.016
Method Blank	ND	1.6
MBNS	0.85	•••
MBNS	0.83	••
R-3-SS	190	••
R-4-SS	46	
R-4-SS Dup	43	
E-3-SS	2.9	
E-3-SS NJ	10.3	
E-4-SS	1.2	
F-1	2.3	
O-2-SS	ND	0.35
K-4-SS	<i>3.</i> 7	••
J-3-SS: -	268	••
J-3-SS	237	NA-10
J-3-SS NJ	273	
J-4-SS	148	80-10
K-3-SS	6.1	**
J-2-SS	*	ijr
STDCL-4B	6.8	30-D
STDCL-3A	9,9	**

ND = Not Detected.

Note: The samples collected were lagoon sediments; STDCL indicates EPA performance tests; MBNS was a method blank: NJ is a samples split with NJDEP.

Source: WESTON, 1988

^{* =} Results of this sample analysis not reported due to crystallization of liquid phase following extraction.

1990-1993 Remedial Investigation

TABIJ! 5-1 SUMMARY OF LACKOON SAMPLING DATA VOLATILES AND SEMIVOLATILES SCCC, KEARNY, NJ

LABNUMBIR	11A3591	ī	11A3592		1IA3593	1	1 IA3594		11/3	597	IIA3	598
SAMPLE NUMBER	WLS-1	'	WLS-2		13.S-1		ELS-2	1	· WI	.S-I	13.2	H
MEDIUM	SEDIMEN	т	SEDIMENT		SEDIMEN	т	MIMICEIZ	r l	W۸	TER	WAT	ari.
	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.	CONC	D.L.	CONC	D.L	CONC	D.I_
VOC Compound (ug/kg)									(ug/i.)		-	
Benzene	ND	15000	BMDI,	4100	896	670	23400	6700	ND	4.4	ND	22.0
Chlombenzene	ND	20000	ND	5600	ND	910	ND	9100	BMDL.	6.0	77.6	30.0
Filhylbenzene	39600	24000	1 5200	6780	2580	. 1100	43300	11000	ND	7.2	ND CIN	36.0
Methylene Chloride	21500	9300	6090	2600	438	420	5330	4200	_ND_	2.8	ND	14.0
Toluene	33800	20000	15300	5600	3050	910	63100	9100	ND	6.0	BMDL.	30.0
BNA Compound (ug/kg)									(ug/L)	······································		
Accraphthene	6070006	130000	2070000	170000	529000	5800	3650000	290000	ND	1.9	BMDL.	1.9
Anthracene	1700000	130000	190000	170000	189900	5800	BMD1.	290000	ND	3.6	(IN	1.9
Benax(a)anthracene	BMDI.	520000	ND	720000	ND	24000	ND	1200000	ND	R.0	ND	8.0
Benzi(b)fluxmnthene	BMDL.	329000	ND	440000	ND	15000	ND	730000	ND	4.9	NI)	4.9
1.2-Ui chlumbenzene	ND	130000	ND	170000	22190	5800	ND	290000	BMDI,	1.9	1.9	1.9
1,3-1%chlorobenzene	ND	130000	ND	170000	ND	5800	ND	290000	4.6	1.9	10.2	1.9
1.4-l heldendenzene	ND	290000	CIN	400000	40000	13000	ND	660000	10.5	4.5	23.0	4.5
Fluoranthene	903000	150000	BMDt.	200000	115000	6700	ND	330000	ND	2.2	ND	2.2
Huorene	5150000	130000	717000	170000	587000	\$800	604000	290000	BMDI.	1.9	ND_	1.9
I lexachtorobenzene	ND	130000	ND_	170000	93500	5800	ND	29HXXXX	BMDI.	1.9	NI)	1.9
Napisthalene	2040000000	110000	300000000	150000	00000018	4800	25200000000	240000	12.7	1.6	3.1	1.6
Phersinthrene	5320000	360000	628000	500000	715000	16000	BMDI.	820000	BMDL.	5.5	BMDI.	5.5
1.2.4-l'richlorobenzene	ND	130000	NI)	170000	ND	5800	ND	290000	7.1	1.9	18.5	1.9
f'yrcuc	663900	130000	ND	170000	32200	5800	ND	290000	NI)	1.9	(IN	1.9
2.4-Dimethylphenol	21900000	180000	2770000	250000	17600000	8200	3490000	410000	!!.!	2.8	154.0	2.8
Phenol	1210000	100000	12100000	140000	4220000	4500	14100000	2,36000	74.3	1.5	24.2	
Phendics	31.5	10.73	9.6	2.98	12.6	4.88	1.29	0.48	0.15	0.05	1.12	0.03

ND -Not detected

BMDL - Present below detection limit, estimated concentration not reported by Inhumbary

TABLE 5-1 (Continued) SUMMARY OF LACKOON SAMPLING DATA MISTALS SCCC, KEARNY, NJ

LABNUMBER	11A359		1 IA359	2	11A359	3	IIA3	594	11/43	1597	IIA:	3598
SAMPLE NUMBER	WI.S-I		WLS-2		F3.E1		ELS	-2		.S-I		.S-1
MEDIUM .	SEDIMEN	T	SEDIMIR	TT I	KIMICEIZ	rr l	MICEIZ	_	L	.713R		ar Ter
	CONC	D.L.	CONC	D.L.	CONC.	D.I.	CONC	D.I.	CONC	D.L.	CONC	
Mctals (mg/kg)									(mg/l.)	47.13	CONC	<u>D.L.</u>
Antimony	ND	39.00	BMDL	11.00	BMDL.	19.00	19.00	18.00	NI	0.0600	DAZZN	0.000
Antenic	BMDL	33.00	BMDL.	9.50	BMDL.	3.10	5.10	3.00	ND		BMDI.	0.0600
Beryllium	ND ND	0.66	ND	0.19	ND	0.31	ND	0.30	ND	0.0100	BMDI.	0.0100
Cadnium	BMDL.	1.30	0.39	0.37	NI)	0.62	IMDI.	0.50		0.0010	ND_	0.0010
Chronium	200	6.60	521.00	1.90	767.00	3.10	2080.00		ND_	0.0020	ND	0.0020
Copper	480	6.60	66.00	1.90	200.00			3.00	0.30	0.0100	2.8400	0.0100
Lead	970	49.00	1200.00	14.00	570.00	<u>3.10</u> 23.00	64.00	3.00	ND_	0.0100	0.0350	0.0100
Mercury	16	0.53	BMDL	0.15	4.50		4270.00	23.00	BMDI.	0.0750	0.3500	0.0750
Nickd	130	13.00	41.00	3.70		0.11	3.10	0.24	BMDi,	0.0002	0.0017	0.0002
Sclerium	BMDL	3.30	ICIMO	0.94	91.06	6.20	150.00	6.10	BMDI.	0.0200	0.0220	0.0200
Silver	BMDL	6.60	NI)		ND NO	7.50	ND	7.50	ND	0.0050	ND	0.0050
Theilium	ND	6.60		1.90	NI)	3.10	BMDI.	3.00	ND	0.0100	ND	0.0100
Zinc	ND ND		NI)	1.90	ND	16.00	NI)	3.00	ND	0.0100	ND	0.0100
Cyaride	_	13.00	20.00	3.70	20.00	6.20	39.00	6.10	0.39	0.0200	0.3700	0.0200
C. Yalla GC	58.70	3.33	98.70	0.93	12.58	1.50	14.30	1.50	ND	0.0250	ND	0.0250

NI) - Nat detected

BMDL-Present below detection limit, estimated concentration not reported by laboratory

E.2 Soil Data

1983-1984 Hydrogeologic Investigation

Table 1-1
Summary of Soil Sample Metals Analyses Results SCCC, Kearny, NJ (1983)

***************************************		Total Ch	romium			ı	EP Toxicity	Test Leacha	le		
Description	pH	Chromium mg/kg	Hexavalent Chromium mg/kg	As mg/l	lla mg/l	Cd mg/l	Cr mg/l	Pb mg/l	lig mg/l	Se mg/l	Ag mg/l
1D: 5-7' fill	NA	150	ND	ND	0.81	ND	ND	ND	ND	ทบ	ND_
ID: Meadow mat	7.7	3	ND	NU	0.56	ND	ND	ND	ND	ND	ND
1D: 15-16' sand	NA	6	ИИ	ND	0.17	ND	ND	ND	ND	ND	ND
2D: 5-7' fill	12.3	31.100	14.4	ND	0.68	ND	16	ND	ND	.018	ND
2D: Meadow mat	11.7	16.500	0.7	ND	0.019	ND	3.23	מא	NU	טא	ND
2D: 13' silt	NA	82	ND	ND	0.34	ND	ND	שא	ND	ND	ND .
2D: 13-15' sand	NA	48	ND	ND	0.15	นท	ND	ND	עא	ND	טא
3D: 2-3° fill	12.2	31.000	5.7	ND	0.62	ND	5.44	UN	ND	.017	ND
3D: 5-7° fill	11.4	745	NU	ND	0.51	ND ·	ND	ND_	UND	ND	ND
3D: Meadow mat	8.2	9.9(1)	, ND	ND	0.54	ND	- 0.87	ND	טא	UN	ND
3D: 12-13' sand	NA	10	ND	מא	0.16	ND	ND	ND	ND	טא	ND
4U: Meadow mat	8.1	770	טא	ND	0.46	ND	- ND	טא	ND	ND	שא
4D: 15-17' sand	NA	49	ND	ND	0.19	ND_	ND	ND	ND_	ND	ND
4D: 15-17' sand	5.7	36	שא	ND	0.19	ND	ND	ND	שא	NU	טא
5D: 5-7' fill	12.2	18.000	38,0	ND	0.43	ND_	41.6	ND	ND	.013	ND
5D: Meadow mat	8,7	7.600	ND	ND	0.78	ND	3.08	UN	שא	ND	טא
5D: 17-19' sand	NA	. 12	ND	0.051	0.07	ND	0.41	ND	dN	ND	שא
Lagoun I	NA	7.700	ND	GN	0,30	ND	0.41	ND	ND	ND	. ND
Lagoon 2	NA	6,400	NU	ND	0.11	ND	ND	ND	טא '	ND	ND

ND = Not Detected NA = Not Analyzed 1985 Phase II Dioxin Site Investigation

Table 1-3

Results of Phase II Dioxin Investigation SCCC, Kearny, NJ

Sample Collection Date:

7 May 1985

Sample Analysis Date(s):

15, 16, and 17 May: 16 and 17 June 1985 Environmental

Testing and Certification Corporation, Edison, New Jersey

	2.3,7,8-TC	CDD (ppb¹)	
Sample Number	Measured	DL ²	Sample Type
1	ND³	0,15	Surface soil
2	ND	0.60	Surface soil
3	ND°	0.037	Surface soil
4	ND	0.62	Surface soil
5	ND	0.42	Duplicate of Sample 4
6	ND	0.54	Surface soil
7	ND	0.67	Sediment
· 8	ND	0.23	Surface soil
9	ND	0.25	Field/equipment blank
10	ND	0.29	· Surface soil
11	ND	0.16	Surface soil
12	0.524		Surface soil
13	ND	070	Surface soil
14	ND	0.62	Surface soil
15	ND	0.29	Surface soil
16	59.54	**	Sediment
17	5	••	Sediment
18	ND	0.11	Equipment blank
19	4.90	••	Proficiency

ppb = Parts per billion, i.e., µg/kg of soil or sediment on an "as is" basis.

DL = Method detection limit which is the concentration at which there is a 99 percent confidence level that the compound is present. ETC only reports detection limits for non-detect results.

ND = Not detected.

Repeat analysis, required for quality assurance review.

Repeat analysis unsuccessful - failed surrogate recovery.

Results of re-analysis by California Analytical Laboratories of West Sacramento, California, on 16 September 1985.

1985-1988 Stage I, II, and III Dioxin Investigation

Table 1-4

Summary of 2,3,7,8-TCDD Concentrations in Soil Samples Collected in August 1985 SCCC, Kearny, NJ

Riverbank RB-2A RB-2C	0-0.5 1.5-2.0 0-0.5 1.5-2.0	<0.07 <0.16 <0.10
RB-2C	1.5-2.0 0-0.5	<0.16
	0-0.5	
RR-3A RR-3B		<0.23
Lagoon Perimeter	0-0.5	<0.05
LP-1B	1.5-1.7	<0.12
LP-18	0.5-WT	<0.67
LP-3A	0-0.5	<0.02
LP-3C	3.5-4.0	<0.17
LP-4A	0-0.5	<0.16
LP-4B	6.0-6.5	<0.15
LP-5A	0-0.5	<0.10
LP-5D	3.6-4.1	<0.01
LP-6A	0-0.5	<0.03
LP-6B	0.5-WT	<0.05
LP-7A .	0-0.5	<0.09
LP-7B	1.7-2.1	<0.38
Lagoon LD-1		3.1/9.6
EL-1	0-0.5	<0.10
EL-ID	0-0.5	<0.10
EL-3	0-0.5	62.1
WL-2	0-0.5	<75.5°/55.6°
WL-2D	0-0.5	45.2
Other Areas	0-0.5	5.0
10A	1,5-2.0	<0.23
12	1.5-2.0	<0.13
13		<0.16
NJ-01 DP-1		<0.07

Note: Samples analyzed by Cal. Analytical. A. B. C. D indicate depths at the Riverbank, Lagoon Perimeter and Other Area locations. El-ID is a duplicate sample.

WT = Water table.

 ⁼ Chemical interferences.

b m Duplicate analyses.

Table 1-5

Stage I Analysis Summary SCCC, Kearny, NJ

WESTON Sample Number	TCDD Measured (ppb)	TCDD Detection Limit (ppb)
Method Blank	ND	0.13
Method Blank	ND	0.092
S-1-SS	ND	0.41
R-1-SS	15.3	•
N-1-SS	ND	0.62
N-1-SS Dup	ND	0.49
L-IH-SS	0.71	•
E-1	0.85	<u> </u>
1-114	NDND	1.1
P-1-SS	ND	0.60
O-1-SS	ND	0.33
O-FP-SS	ND	0.53
O-FP-SS-NS	9.2	
B-1	8.2	5
J-1H	11.2	64
STDCL-1A	ND	0.25
STDCL-1B	9.2	**
C-2H-SS	0.23	
C-2H-SS Dup	ND	0.45
M-1-SS	ND	0.36
K-IH-SS	69.6	••
O-1-SS	ND	0.56
O-1-SS-NS	8.2	
O-1D-SS	ND	0.26
Method Blank	ND	0.12
Method Blank	ND	0.20
SS-1	ND_	1.1
SS-2	ND	1.4
F.	b	*
G-1	2.8	••
H-1	ND	0.73
D-1	ND	0.90
T-1-SS	ND	0.23
A-1	2.6	
Method Blank	ND	0.034
T-2-SS	ND	0.21
S-2-SS	ND	0.076

Table 1-5 (continued)

WESTON Sample Number	TCDD Measured (ppb)	TCDD Detection Limit (ppb)
R-2-SS	62.1	•
E-2-SS	- 31.9	-
N-2-SS	ND	0.18
O-2-SS	ND	0.028
P-2-SS	ND	0,11
C-1	19.5	
C-1 Dup	16,3	
1-2-SS	3.2	
1-3-SS	38,4	
1-4-55	6.2	<u> </u>
D-2-SS	ND	0,053
G-2-SS	ND	0.12
B-2-SS	ND	0,11
M-2-SS	ND	0,084
K-2-SS	2.7	<u></u>
H-2-SS	ND	0.13
A-2-SS	ND	1.5
O-2D-SS	ND	0.089
STDCL-2B	3,5	
Method Blank	ND	0.087
I-1H NS	1.3	
Method Blank	ND	0.19
Method Blank	9.4	·
WS-1	9.6	
WS-2:	ND	0.61
Method Blank	ND	0.17
Method Blank NS	9.6	-
RS-I	0,14	
F-4-SS	4.3	
J-2-SS	*	•
J-3-SS	d	
J-4-SS	•	\$

ND = Not Detected.

Note: The samples collected were lagoon sediments except for the following: STDCL indicates EPA performance test; SS-1, SS-2 were surface soils; WS-1 was a wipe sample, foundation; WS-2 was a wipe sample, blank.

Source: WESTON, 1987

^{* =} Results of this sample analysis not reported due to crystallization of liquid phase following

Table 1-6

Stage II and III Analysis Summary SCCC, Kearny, NJ

WESTON Sample Number	2,3,7,8-TCDD Measured (ppb)	2.3,7,8-TCDD Detection Limit (ppb)
Method Blank	ND	0.016
Method Blank	ND	1.6
MBNS	0.85	••
MBNS	0.83	••
R-3-SS	190	••
R-4-SS	46	••
R-4-SS Dup	43	÷-
E-3-SS	2.9	••
E-3-SS NJ	10.3	***
E-4-SS	1.2	**
F-1	2.3	
O-2-SS	ND	0.35
K-4-SS	3.7	· dra
J-3-SS "	268	•• ·
J-3-SS	237	ur ma
J-3-SS NJ	273	•••
J-4-SS ·	148	10-40
K-3-SS	6.1	*
J-2-SS	*	4
STDCL-4B	6.8	, , , , , , , , , , , , , , , , , , ,
STDCL-3A	9,9	**

ND = Not Detected.

Note: The samples collected were lagoon sediments; STDCL indicates EPA performance tests; MBNS was a method blank; NJ is a samples split with NJDEP.

Source: WESTON, 1988

^{* =} Results of this sample analysis not reported due to crystallization of liquid phase following extraction.

1991 Interim Remedial Measures Sampling

SUMMARY OF SOIL AND SEDIMENT CHARACTERIZATION PREVIOUS INVESTIGATIONS

TOTAL AND HEXAVALENT CHROMIUM

SITE 116 - STANDARD CHLORINE CHEMICAL COMPANY

Sample ID	Date Collected	Collected By	Document* Reference	Sample Type	Units	Depth (ft bgs)	Total Cr	Cr(VI)
SSW/SED-5	1/91	Weston	9	Sediment	mg/kg	NR	12,600	NR
SED-1	1/91	Weslon	9	Sediment	mg/kg	NR	3,440	NR
SED-2	1/91	Weston	9	Sediment	mg/kg	NR	100	NR
TP #1	5/93	Weston	12	Test pit	mg/kg	4	31,900	NR
TP #2	5/93	Weston	12	Test pil	mg/kg	1.5	1,740	NR
TP #3	5/93	Weston	12	Test pit	mg/kg	2	26,300	NR
TP #4	5/93	Weston	12	Test pit	mg/kg	2	34,900	- NR
TP #5	5/93	Weston	12	Test pit	mg/kg	6	33,100	NR
TP #6	5/93	Weston	12	Test pit	mg/kg	2.5	30,400	NR
TP #7	5/93	Weston	12	Test pit	mg/kg	2	32,100	NR
TP #8	5/93	Weston	12	Test pit	mg/kg	3	32,600	NR'
001	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	722	<2.7
002	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	17.5	<3
002	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	1,990	270
004	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	21.4	<3
005	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	733	8.2
006	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	2,000	16
007	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	2,520	13
008	.8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	1,490	15
009	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	2,540	110
010	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	529	8.6
011	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	579 '	<30
012	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	129	<3.6
013	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	1,100	7.3
014	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	2,240	13
015	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	520	3.4
016	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	769	12
017	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	511	3.8
018	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	224	3
031	8/91	French & Parrello	8	Surface Soil	mg/kg ·	0-0.5	9,900	< 0.14
032	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	5,330	0.65
033	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	9,900	244

SUMMARY OF SOIL AND SEDIMENT CHARACTERIZATION PREVIOUS INVESTIGATIONS

TOTAL AND HEXAVALENT CHROMIUM

SITE 116 - STANDARD CHLORINE CHEMICAL COMPANY

Sample	Date	Collected	Document*	Sample	Units	Depth	Total	Cr(VI)
ID	Collected	Ву	Reference	Type		(ft bgs)	Cr	
034	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	18,000	<0.11
035	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	11,000	0.39
036	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	6,460	<0.26
037	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	5,120	54
038	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	18,800	< 0.23
039	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	11,500	195
040	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	7,050	<0.24
041	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	9,390	0.15
042	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	11,900	< 0.12
043	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	8,570	<0.15
044	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	579	<0.26
045	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	95.7	< 0.13
046	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	59.7	< 0.14
047	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	142	<0.14
048	8/91	French & Parrello	8	Surface Soil	mg/kg	0-0.5	188	<0.28
001	8/91	French & Parrello	8	Sweep Sample	mg/kg	NA	623	<2.7
002	8/91	French & Parrello	8	Sweep Sample	mg/kg	NA	322	33
003	8/91	French & Parrello	8	Sweep Sample	mg/kg	NA	423	12
TPS-A1-1	1/00	ES	20	Sediment	mg/kg	1	3,207	ND
TPS-A1-5	1/00	ES	20	Sediment	mg/kg	5	9.5	ND
TPS-A1-10	1/00	ES	20	Sediment	mg/kg	10	24.7	ND
TPS-A2-1	1/00	ES	20	Sediment	mg/kg	1	3,197	ND
TPS-A2-5	1/00	ES	20	Sediment	mg/kg	5	930	73.1
TPS-A2-10	1/00	ES	20	Sediment	mg/kg	10	38.7	3.81
TPS-A3-1	1/00	ES	20	Sediment	mg/kg	1	1,280	ND
TPS-A3-5	1/00	ES	20	Sediment	mg/kg	5	257	4.29
TPS-A3-10	1/00	ES	20	Sediment	mg/kg	10	14.3	ND
TPS-B1-1	1/00	ES	20	Sediment	mg/kg	1	1,079	ND
TPS-B1-5	1/00	ES	20	Sediment	mg/kg	5	143	ND
TPS-B1-10	1/00	ES	20	Sediment	mg/kg *	10	6.59	ND
TPS-B2-1	1/00	ES	20	Sediment	mg/kg	1	5,240	ND
TPS-B2-5	1/00	ES	20	Sediment	mg/kg	5	34.2	ND

1990-1993 Remedial Investigation

Table 5-4

Summary of Test Pit Analytical Data
Chromium
SCCC, Kearny, NJ

Test Pit Sample Location	Lab ID Number	Depth of Sample (N)	Chronium (mg/kg)	Detection Limit
TP #1	HA3643	4.0	31900	1.9
TP #2	HA3632	1.5	1740	1.3
TP #3	HA3639	2.0	26300	1.6
TP #4	HA3636	2.0	34900	1.6
TP #5	HA3637	6.0	33100	1.6
TP #6	HA3641	2.5	30400	1.7
TP #7	HA3640 👵	2.0	32100	1.5
TP #8	HA3679	3.0	32600	1.9

TABLE 5-5 SUMMARY OF SOIL ANALYTICAL DATA VOLATILE AND SEMIVOLATILE ORGANICS SCCC, KEARNY, NJ

LAB NUMBER	HA3566		11A356		IIA3		IIA3572		HA3570		HA35		11A3573 TSS-7		
SAMPLE NUMBER	TSS-I		TSS-2		TSS	•	TSS-4		TSS-5		TSS-				
	CONC.	D.I	CONC.	D.L.	CONC.	D.L	CONC.	D.I	CONC.	D.I	CONC.	D.I	CONC.	D.I.	
VOC Compound (ug/kg)			·· ———			= == 1				:	- 55 1		NED 1	7.50	
Benzene	ND_	27000	ND	6400	ND	7.20	CIN	3300	BMDL.	110.0	_ND	76.0	MD BMDL	7.50	
Chlorobenzene	99600	38000	ND_	8700	BMDI.	9.80	5940	4500	300.0	150.0	ND.	100.0		10,00	
Methylene Chloride	ND	18000	5690	4100	ND	4.60	ND	21(K)	114.0	72.0	70.8	48.0	6.57	4.70	
1,2 Trans-dichkyroethylene	ND	10000	ND_	2300	ND.	2.60	ND.	12(X)	76.5	41.0	ND	28.0	20.50	2.70	
Tetrachloroethylene	ND	26000	CIM	5900	BMDI.	6.70	ND.	3100	2310.0	110.0	BMDL.	71.0	12.50	6.90	
Trichkroethylene	UND	12000	ND	2800	ND	3.10	ND]	1400	866.0	49.0	_ CIN_	33.0	29.20	3.20	
BNA Compound (ug/kg)		<u></u>											KIK T		
Acenaphihene	92000	12000	219000	2700	_ ND	3100	BMD1.	2900	11800	4900	_ND	3300	ND ON	3200 5900	
Acenaphthylene	24100	22000	BMDI.	5100	ND	5700	NI)	5300	ND_	9000	ND	600x)			
Anthracene	46200	12(100)	7290	2700	ND	3100	ND	29(1)	ND	4900	ND	33(8)	- NIS	3200	
Benzo(a)anthracene	BMDL.	49000	BMDI,	11000	BMDI.	13000	BMDL.	12000	BMD1.	20000	BMD1.	[30XX)	ND	13000	
Henzix(a)pyrene	ND_	16000	3840	3600	34100	4100	6580	3800	ND	6400	4910	4300	4950	4200	
Benzo(b)fluoranthene	ND	30XXX	BMDI.	6900	65800	7900	16700	72(H)	\$4000	12(XX)	116(K)	8200	8700	8100	
Benzo(ghi)perylene	ND	260XN)	BMDL	5900	31400	6700	7940	6200	BMDI.	11000	9050	7(XX)	10500	6900	
bis(2-Ethylhexyl)phthalate	ND	63000	KI)_	14000	ND	16000	ND	15(KK)	30000	26000	34500	170(X)	44500	17000	
Chrysene	41900	16000	7420	3600	14600	4100	12000	38(8)	12500	6400	6670	4300	4830	4200	
Dibenzo(a,b)anthracene	ND	160XX	ND	3600	7280	4100	ND	3800	CIN	6400	ND	4300	ND_	42(X)	
1,2-Dichkrahenzene	3850000	12000	4680000	27(X)	12100	3100	34400	2900	522000	4900	10800	33(8)	3780	32(X)	
1,3-Dichlorobenzene	1210000	12000	738000	2700	14500	3100	9590	2900	394000	49(X)	9500	33(N) 76(X)	6400	32(X)	
1,4-Dichkorobenzene	2230000	27000	4840000	6400	54600	72(X)	15000	6600	52200	11000	15700		BMDL		
Di-n-hutyl phthalate	ND	63000	ND	14000	ND_	16000	ND	15000	NI)	26000	NI) 5330	17(10)	ND	170XX	
Pluoranthene	121000	_14(XX)	12300	3200	7280	3600	8990	3300	12300	5600		38(K)	BMDL	370X	
Fluorene	213000	120XX	45600	2700	NI	3100	NI)	29(K)	BMDI.	49(1)	ND	3300	ND	320X	
llexachlorobenzene	45000	12000	137000	2700	ΜĎ	3100	30400	29(X)	359000	4900		3300	21100	320X 150X	
Hexachkrobutadiene	ND	5600	8520	1300	ND	1500	NID	1400	1 .: :	2300		1500	ND		
Indeno(1,2,3-c,d)pyrene	NI)	23000	BMDL	5400	35900	6100	10500	5600	• •	9500		6400		6300 2700	
Naphthalene	23700000000	10000	167000	2300	191000	2600	5020	24(K)		4100		2700		910	
Phenanthrene	428000	34(K)O	35300	7800	BMD1.	8900	10900	8100		140XX		9300			
Pyrene	70500	12000	8020	27(X)	6690	3100	5800	290N	•	4908	4310	3300	1	32(8	
1,2,4-Trichlorobenzene	75000000	12000	3040000	2700	6360	3100	14100000	29XXI	68200000	49XX	30100	3300	25400	320x	

CONC.—Concentration of Compound D.L.—Detection Limit ND—Not Detected BMDI.—Present below detection limit B—Blank sample

TABLE 5-5 (Continued) SUMMARY OF SOIL ANALYTICAL DATA VOLATILE AND SEMIVOLATILE ORGANICS SCCC, KEARNY, NJ

LAB NUMBER	IIA35		HA356		HA3568	-	11/35	
SAMPLE NUMBER	TSS		73S-9		CRC-SST		TSS-1	
	CONC.	D.I.	CONC	D.L.	CONC.	D.I.,	CX)NC:	D.1.
VOC Compound (ug/kg)								r. ——
Benzene	ND	6.70	ND	8100	ND	66(X)	BMDI.	6.90
Chlorobenzene	ND	9.10	33500	11000	68400	9000	89.10	9.40
Methylene Chloride	ND ND	4.20	7020	5200	5980	4200	_ ND .	4.40
1,2 Trans-dichloroethylene	ND	2,40	ND	3000	NI)	24(10)	ND.	2.50
Tetrachloroethylene	ND_	6.20	ND	7600	BMDL	6100	9.91	6.40
Trichloroethylene		2.90	CIN	3500	ND	28XX)	ND	3,0%
BNA Compound (ug/kg)								
Acenarithene	ND	2900	ND	3500	BMDL.	2800	3810	XXX
Acenaphthylene	(IN	5300	ND	6500	ND_	5200	ND	5500
Anthracene	ND	2900	3830	3500	4270	28(N)	8050	34KK
Benzo(a)anthracene	ND	12000	BMDL.	14000	BMDI.	12(XX)	BMDt.	120XX
Benzo(a)pyrene	BMDI.	3800	BMDI.	4600	ND	37(X)	ND	39(X
Benzo(b)fluoranthene	BMDL	7200	33100	8900	ND	7100	מא	750x
Benzo(ghi)perylene	BMDL.	6200	9000	7600	6810	61(X)	ND	6400
his(2-Fahylhexyl)ohthalate	ND	15000	ND	190XX)	ND	15000	ND	16(X)
Chrysene	ND	3800	21500	4600	17200	37(X)	10900	390
Dibenzo(a,h)anthracene	ND_	3800	CIN	4600	ND	3700	ND	390
1,2-Dichlorobenzene	ND_	2900	4340000	3500	6470000	2800	6530	30XX
1,3-Dichlorubenzene	ND	2900	1270000	3500	1550000	28(X)	66200	300
1,4-Dichlorobenzene	ND	6600	876000	8100	1200000	65(X)	417(K)	69XH
Di-n-butyl phthalate	ND	15000	ND	19(XX)	ND	15000	ND	1600
l-horanthene	BMDL.	3300	33800	4100	23400	3300	18900	340
Fluorene	ND	2900	ND_	3500	_BMDL_	28(X)	24400	300
1 lexachtorobenzene	BMDL	2900	34800	3500	23800	2800	כוא	30X)
1 lexachlorobutadiene	ND	1400	ND	1700	ND	1300	ND	140
Indeno(1,2,3-c,d)pyrene	BMDL	5600	11100	6900	7660	5500	ND	580
Naphthalene	16700	2400	ND	3000	ND	24(X)	448000	250
Phenanthrene	BMDL	8100	59700	10000	59900	8(NX)	179000	840
Pyrene	BMDL	2900	17100	3500	11900	2800	21500	300
1.2,4-Trichlorobenzone	28300	2900	100000000	3500	200000000	2800	62800	300

CONC.—Concentration of Compound D.I..—Detection Limit ND—Not Detected BMDI.—Present below detection limit B—Blank sample

TABLE 5-6 SUMMARY OF ANALYTICAL DATA SOUR DORINGS VOLATILISAND SIMIVOLATILIS ORGANICS SCCC, KIMRNY, NJ

LAB NUMBER	11/43		CB:		CB21		CIE		C,B51		CR2176		CB2178	
SAMPLENUMBER	MW	-21_	SB-	21	SB-21		SI3-3		\$8-3		SB-4		SB-4	
	CONC.	DI.	CONC.	DL	CONC.	D.L.	CONC.	D.l.	CONC.	D.L.	CONC.	D.L.	CONC.	D.1_
VOC's (wg/tg)							-							
Chlarenethan	CIN	1100	(IN	13		7(000	NI)	1400	350 J	1.200	180	1900	ND	2000
Acetone	NA.	NA	16	13	4300 J	7KKKI	ND	1-100	(IM	19X)	350 J	1910	410	2(8)(1
2-Butanene	_ NA	NA.	ND	13	MD	7KXX)	450 J	14X)	170 J	(X P.)	560 J	1910	ND	2(111)
1, 1, 1-Trichloruediane	ND_	400	M)	13	NI)	7 NXX	360 1	[-HX)	NI)	190	500 J	1500	460	2(11)
Carlun Tetrachicide	(DA	3(1)	CIM	13	ND	7800	(IM	1-KX1	ND	130	89.1	1900	ND	2(110)
Benzene	ND_	470	NI)	13	48000 J	7(00)	320 J	14x)	110 J	1500	150 J	1900	600	2(1X)
1.24Dichlorochene	NA.	NA _	CTM	13	NI)	7(000	ND	140	790 J	1981	NI)	191)	(IM	2(11)
Chkwobenzene	BMDL.	640	MD	13	220000	7 (XXX)	15000	14(0)	91.1	19X)	5100	URI	27000	2(311)
Tokiene	NA	64)	8L I ·	13	960 J	71000	160 J	3-XX)	MD	15(11)	210 J	(XX)	160	2(8,4)
Xylene	NA.	NA	CD4	13	NI)	7 KKK)	NI)	140	ND	19x)	150 J	1911		2(1)()
Texachioroethene	ND	440	3 J	13	_ NI)_	7 (100)	NI)	1-#X)	16000	1500	150 J	1910		2(1)()
Styrone	NA	NA	MD	13	NID	7 KXX)	ND	[400	ND	190	120 J	1910	ND	CHERS
RNA's (mg/kg)														
1.24Dichlorohenzene	1140	460	6800 J	13000	9200000	(20XXXX)	400000	IBIN	ND	2CHYN)	98000 J	13000	MD	131(11)
1.3Dichlumbenzone	833	400	3500 3	IXXX	1300000	120000	410000	13101	ND	2C(XXX)	12000 J	1300	(IN	(nxic)
1.4DicHordenzene	1290	1 KX)	3400 J	(XXX)	1300000	(ZOURKE)	43000X3	13XXI	ND	ZGHRRI	7000 J	IXXXI		13KK)
Narhhalene	3220	39,0	5300 J	1,300	NI)	12IXXXXI	NI)	131HIE	NI	2(AKKK)	NI)	(JUL	ND_	(XIIC)
2 Methyl Naghthelene	NA	NA	1 0036	(RRE)	ND	13XXXI)	NI)	IXXXI	CIM	Zeakhu)	(IM	1311	C18	t3xx)
1.2.4-Trichlandenzone	NI)	460	6000 J	(KKE)	240000 J	(DEEKE)	34000	(KXE)	NI)	200 MM	(IM	IJAK	(DA	IZXXI
Acenaphthene	1100	4(0)	25000	1300	(IN	13XXXII	(IM	(311)	NI)	26(XXX)	(IN	13110		IZXII
2.4 Dimethyl Phenol	ND	6(1)	ND	13010	NID	12IXKXT)	NI)	131K)	(IN	2(LXXXI)	MD	13 XIII		(ANE)
Ditenzelupa	NA.	NA.	1,5000	13UNI	NI)	134440	CIN	131XI	NI)	2(ANNI)	NID	13xx		(3KE)
Flumene	1360	4(1)	33000	(XXX)	(IN	(ZXXXX)	CIN	13mm	NID	2canun)	NI)	IXE!		INNE
Phenanthrene	3660	1311)	200000	13000	(IN	130000	(IN	IKNE	(IN	2((XXII)	CIK	13KK	(IN	IZXXI
Anthracere	587	460	90000	13110	NO	DIMINE	NI)	IJIKKE	NI)	2GHKN1	ND	12111	ND	(BRE)
Carpazde	NA.	NA	1000 J	UNKI	ND)	12XXXXI)	(IN	131111	NI	2GANN)	NI)	1311		(JIKK)
Fluxanthene	3140	530		13000	ND	(TXXXXI)	NID.	IJAN	CIN	Z(AKHN)	NI)	ISIL		(ANE!
Pyrene	1890	4(1)	190000	13110	NIX	12(1)(1)	NI)	IXXX	ND	2(ANNA)	(M	1311		13xx)
Benze(a) anthencene	BMD1.	1900	\$7000	13000	CIN	13xxxx	(IM	13HH	NID	Z(AXXX)	ND	1348	(IN	(ARE)
Chrisene	629	6 K)		(XXX)	NI)	13KHHE	NID	ME	(IN	26KKA)	NI)	1311	(IM	IRKE
Benzi (h Flouranhene	1800	12KI	58000	13000		(ZXXXXI)	ND	IZXX	CIN	Z(HXX)	NE)	IBKX	NE	13KK)
Benzu(a)Pyrene	BMDI.	GKI		1 XXX	NI)	IZXXXII		(3KH)	ינוא –	2(dexe)	NI)	1311) NE)	1311
Index(1,2,3-cd) Pyrene	NI	90	1	(3xx)	CIN	IZHNASI		13XX	CIN	2(ANNI)	NI)	1311		(3Xe)
Benza gh,) Perylene	CDI	3(JK)	53000	1,3000	CIN	IZXXXXI	Ni	13KK	(IN	2(4888)	NI)	(Axe		13111
his 2-Ethylheryl phtholate	9520	2.4(1)		1311(1)		(3XXXX)		IZKR	(IN	ZGARRI	NI)	1311		13xKI
Di-n-butyl pishatate	3(60	2410		13000		1333433		IBHX	NI	2GRANI	NI)	1311	(IN	1384
Pest/PCB (ug/kg)(1):	1,	·	<u> </u>	1			,				1			
Anchlor I248	NA	NA.	I ND	1300	ND	39	NI)	34	8 ND	43	(IN	1 4		- 41
Anchlor 1254	- NA	NA.	CIN	130X		3	ND	38	B NI)	42	(IN	4	I NO	4
Arichke 1260	NA.	NA.	NO)	1300		39		3	S (E) J	43		1	(IN	4

CONC.-Concentration of compound D.L. -Detection Limit

NI) - Not detected

BAQDI. – Present below method detection limit, estimated concentration not reported by laboratory

(1) Laboratory method may detect take positives that to interference of elevated concentrations of obligational compounds.

5-2

TABLE 5-6 (Continued) SUMMARY OF SOIL ANALYTICAL DATA MITALS SCCC, KEARNY, NJ

LAB NUMBER	HA35		CB21		CB-2 SB-2		CB21 SB-3/		CB21 SB-		CB2 SB-		CH2 SB-4	
SAMPLE NUMBER	CONC	D.I	CONC.	D.I			CONC.	D.J	CONC	D.I	CONC.	D.I	CONC.	D.I.
Mctal (mg/L)							c I		===1			24	20.1	24
Antimony	BMDL	13	ND_	24	ND	24	ND	24	_ ND	24	47.5			
Arsenic	BMDL.	2.1	4.21	4	_BMDI.	4	2,53	4	2.71		41.9		13.2	
Beryllism	BMDI.	0.21	BMD8.	0.4	BMD1.	0.4	BMDI.	0.4	BMDI.	0.4	BMDI.	0.4	_BMDI.	0.4
Cadmium	0.93	0.43	BMD1.	().8	ND _	0.8	BWDI.	0.8	BMDI.	0.8	4.10	0.8	1.9	0.8
Chromium	593	2.1	36.7	4	4.45	4	685	4	0.39	4	428	4	130	4
Copper	26	2.1	23.6	4	BMDL.	4	109		23.2	4	335	4		
Lead	640	16		30	4.82	30	53	_ 30	19.9	30	647	30		30
Mercury	BMDI.	0.17	0.55	0.32	ND	0.32	BMD1.	0.32	BMDL.	0.32	ND_	0.32	"BWiDI"	0.32
	- A	4.3	 	8.1	BMDI.	8.1	14.6	8.1	9.73	8.1	51.8	8.1	25.5	. 8. į
Nickel	NA NA	NA	BMDL	2	ND	2	dN	2	ND	2	BMDL.	<u> 2</u>	ND	2
Sclenium	BMDL	2.1	ND ND	· 	ND	4	ND	4	ND	4	BMDL	4	CIN	4
Silver		NA NA	-ND		ND		ND ND	4	ND	4	ND	4	ND	4
Thallium	NA	,		8.1	14.2	<u>-</u>	90.6	8.1	42.3	8.1	3710	8.1	1520	8.1
Zinc	55	4.3			ND 2	0.6		0.6		0.6	ND	0.6	ND	0.6
Cyanide	1.2	1.1	ND_	0.6] <u>un</u>	1	.1		1	1	1	I	B	

CONC. - Concentration of compound

D.I. - Detection Limit

ND - Not detected

NA - Not analyzed

BMDL - Present below method detection limit, estimated concentration not reported by laboratory

1996-1997 Focused Remedial Investigation

Table 3-3 Summary of FRI Sail Sample Results Standard Colorine Cornical Company Resons, New Jersey Facility

Sample 1D Sample Dayth (FS Lub 1D0 Sample Time Sample Time Matrix Unite Frammeter	NJDEP Cleamp C Residential Direct Contact	idioria Nankes Direct Contact	5840 14.5-13 88,9963 89,996 1738 5-011 pg/kg	5804 15-15-3 9R1919 97-276 1145 5-41 pg/kg	\$800 1.5-2 88,1910 87,1976 1335 5-68 9878	\$809 18-13.5 BRH213 B712746 1438 5-68 98/143	5B14 18.5-19 BR794 27794 1089 3-68 199 ⁷ -8
POC's (ng/kg) 1,2,3-T richiorobensons 1,2,4-T richiorobensons 1,2,4-T richiorobensons 1,3-Dichiorobensons 1,3-Dichiorobensons 1,4-Dichiorobensons Acetorse Buty Stansans Chémobensons Trichiorobensons Trichiorobensons Trichiorobensons	AVA 60.000 5.100.000 5.100.000 9.000,000 1.000.000 AVA 200,000	NA 1,200,006 NA 10,000,000 100,000,000 100,000,000 NA 600,000 54,000	1,770,000 6,540,000 1,000,000 1,700,000 1,630,000	1,000,000 1,670,000 1,310,000 433,000 BMDL 677,000 57,000 BMDL	32.6 20.3 3.98 BMDL 3.29 BMDL 5.59 BMDL	345,000 1,100,000 306,000 210,000 257,000 42,000 BMIDL	91.9 300 2.15 BMDL 70.2 90.6 33.3 115 3.49 BMDL
SVOC's (ug/2g) Pisphthelene Tetrachkorostivitane	236,000 4,000	4,200,600 6,000	1,010,000	2,400,000	zar .	181,000 56,500 EMDL	57.1

Sample ID Sample Depth (ft) Lab ID9 Sample Date Sample Time	NJDEF Cleanup Residential Direct Contact		S \$47 13.3-16 9 R1937 00/16/96	5819R 16-16.5 987999 98/16/96	\$801 15.5-16 881991 00/1676
Motris Unito Parameter	100 /	kg.	50H 19748	PEPLS	P9/48
VOC1 (ogfig) 1,2,3-Trichlorobessson 1,2,4-Trichlorobessson 1,2,4-Trichlorobessson 1,2,4-Triesen 1,2-Dridsorobessson 1,3-Triesen 1,3-Dridsorobessson 1,4-Dridsorobessson 1,4-Dridsorobessson 1,4-Dridsorobess 1,4-Dridsorobess	NA 68,000 NA 5,100,000 NA 5,100,000 979,800 610,000 410,000	NA 1,200,000 AIA 600,000,00 NA 000,000,00 600,000,1 600,000	65,500 23,900 BMDL 44,300 BMDL 18,308 BMDL	2,140,600 5,250,660 60,600 8M4DL 2,328,000 557,000 1,140,600	2 BMDL 119 43 89
SVOC's (mg/lig) Nashthalane	230,000	4,200,600	1,820,000	6,750,000	*

Notes:
Values that are shaded are above the NIDEP Soft Clearup Criteria for Residential Direct Contact limitations.
Values that are in hold fadica, shaded and bound are above the NIDEP Soft Clearup Criteria for Industrial Direct Contact Limitations.
SNIDL = Concentration detected below truthed detection limits.
NA = No casedard profilets.

1997-1999 Supplemental Remedial Investigation

	NON-RES		DEPTH (M):	0-2		8-12	0-2		10-12	•	0-2	- 1	0-2		8-10	•	16-18			10-12
1A	SOIL CLE CRITERIA	SOIL CLEANUP CRITERIA		1	. '44'		ļ					_	DILUTED		<u> </u>		<u> </u>		**.	
50000	10000000	10000000	1	< 380		< 440	5C0		< 730		< 410	- 1	< 16000		< 1300		< 500	< 1600		< 460
10000	3000	660	ĺ	< 120		< 140	< 130		< 220		< 120	- 1	< 5000		400		< 150	< 470		< 140
10000	5200000	280000		< 380		< 440	< 430		< 730		< 410	- .	< 16000		< 1300		< 500	< 1600		< 460
100000	10000000	5100000		75	J	540	52	1	94	1	< 120		< 5000		< 400		< 150	< 470		< 140
100000	10000000	570000		< 120		2000	130	j	200	J	₹ 120	- }.	< 5000		< 400		< 150	< 470		< 140
50000	10000000	5100000		76	1	190	< 130		< 220		< 120	-	< 5000		< 400		< 150	< 470		< 140
	10000000	2800000		< 380		< 440	230	J	< 730		< 410	- 1	< 16000		< 1300		< 500	< 1600		< 460
				< 120		< 140	< 130		< 220		< 120	-	≤ 500¢		< 400		< 150	< 470	1	< 140
	10000000	2800000		< 380		< 440	< 430		< 730		< 410	-	1600G		< 1300		< 500	320 J	.	< 460
10000	660	660		< 120		< 140	< 130		< 220		< 120	- -	< 5000		< 400		< 150	< 470		< 140
100000	100000	6000		< 120		< 140	< 130		< 220		< 120	-	< 5000		< 400		< 150	< 470		< 140
50000	50000	28000		< 120		< 140	< 130		< 220		< 120		¢ 5000		< 400		< 150	< 470	l l	< 140
50000	10000000	1100000		< 120	•	< 140	< 130		< 220		< 120		< 500Q		< 400		< .150	< 470	- 1	< 140
	1	la contraction of the contractio	Ì	< 380		< 440	< 430		< 730		e 410		16000		< 1300		< 500	< 1600	1	< 460
10000	10000000	1100000		< 380		< 440	220	J	< 730		< 410		16000		< 1300		< 500	360 J	١	< 460
				< 120		< 140	< 130		< 220		< 120	- 1	5000		< 400		< 150	< 470		< 140
10000	3100000	170000		< 380		< 440	< 430		< 730		< 410		16000		< 1300		< \$00	< 1600		< 460
100000	1200000	68000		< 120		< 140	< 130		< 220		< 120	Ŀ	5000		< 400		< 150	< 470		< 140
100000	4200000	230000		< 120		< 140	40	7	92	١	210		\$000		< ADD		70 3	240 3		< 140
,	4200000	230000		< 120		< 140	< 130	j	< 220		< 120		5000		< 400		< 150	< 470	•	< 140
100000	21000	1000		< 120		< 140	< 130		< 220		< 120		5000		< 400		< 150	< 470	1	< 140
100000	10000000	10000000		< 120		< 140	< 130		< 220		< 120	. `	5000		< 400		< 150	< 470		< 140
	770000	457700		< 120		< 140	< 130		< 220		110 1	' °	5000		< 400		< 150	< 470		< 140
100000	7300000 270000	400000		< 120		< 140	< 130		< 220		< 120	1	5000		< 400		< 150	< 470	- 1	< 140
10000	10000000	62000		< 380		< 440	< 430		< 730		< 410		16000		< 1300		< 500	< 1600	- [< 460
50000	1000,000	5600000	l	< 2000 < 120		< 2300	< 2200 < 130		< 3800		< 2100		84000		< 6800		< 2600 < 150	< 8100 < 470	1	< 2300
	l i			< 2000		< 140	< 2200		< 220		< 120		5000		< 400		< 2600	< B100		< 140
50000	10000000	10000000	i	< 120		< 2300 < 140	< 130		< 3800 < 220		< 2100 < 120		: 84000 : 5000		< 6800 < 400		< 150	520	- 1	< 2300 < 140
30,000	19005000	10000000		62	ز	< 140	< 130		(69)		130		5000		< 400		< 150	< 470		< 140
				< 120		< 140	< 130		< 220		< 120		5000		< 400		< 150	< 470	1	< 140
				< 2000		< 2300	< 2200		< 3800		< 2100		84000		< 6800		< 2600	< 8100		< 2300
100000	10000000	3400000		< 120		< 140	< 130		520		240		5000		< 400		< 150	< 470		< 140
10000	2100000	110000	i	< 2000		< 2300	< 2200		< 3800		< 2100	1.	84000		< 6800		< 2600	< 8100		< 2300
15000				< 2000		< 2300	< 2200		< 3800		< 2100		84000		< 5800		< 2600	< 8100		< 2300
				< 120		< 140	€ 130		67	ړ	160		5000		< 400		< 150	< 470		< 140
		•		< 120		< 140	< 130		< 220	-	< 120	- <	5000		< 400		< 150	< 470		< 140
50000	10000000	10000000		< 120		< 140	< 130		< 220		< 120	-	5000		< 400		< 150	< 470		< 140
			1	< 120		< 140	< 130		< 220		< 120	١.	5000		< 400	1	< 150	< 470	1	< 140
100000	10000000	2300000		< 120		< 140	< 130		170	j	240	4	5000		< 400		< 150	< 470	- 1	< 140
	1			< 2000		< 2300	< 2200		< 3800		< 2100		84000		< 6800		< 2600	< B100	ļ	< 2300
	1			< 2000		< 2300	< 2200		< 3800		< 2100	-	84000	٠,	< 6800		< 2600	< 8100	ĺ	< 2300
100000	600000	140000	ı	< 120	ļ	< 140	150		< 220		< 120	- -	5000		< 400		< 150	< 470	- 1	c 148
				< 120		< 140	< 130		< 220		< 120	-	5000		< 400		< 150	< 470		< 140
100000	2000	660		< 120		< 140	< 130		< 220		< 120		5000		< 400		< 150	< 470		< 140
100000	24000	6000		< 2000		< 2300	< 2200		< 3800		< 2100		84000		< 6800		< 2600	< B100		< 2300
				210		< 140	170		820	i	2000		2400	מר	230	j	< 150	< 470		< 140
190000	10000000	10000000		91		< 140	58	j l	280		570	<	5000	- 1	< 400		< 150	< 470	٠,	< 140
				39		< 140	< 130		100	J	360		5000		< 400		< 150	< 470		< 140
100000	10000000	5700000		< 120		< 140	< 130		< 220		< 120	_ [<	5000	_	< 400		< 150	< 470		< 140
100000	10000000	2300000		460	- 1	50 J	380	- 1	1200		3100		3500	JD	400		< 150	< 470		< 140
100000	10000000	1700000		410		44 J	340		1200		6900 E	-	2500	3D	320	J	< 150	< 470		< 140
100000	10000000	1100000		< 120		< 140	< 130	1	< Z20		< 120	1	5000	1	< 400		< 150 < 150	< 470 < 470		< 140
100000	6000	2000		< 120		< 140	< 130 240		< 220		< 120	1	5000	,, 1	< 400	J	< 150 < 150	< 470		< 140 < 140
500000	4000	900		280		< 140	260		470		[1500]	.	[1800]	70	200	١	< 150 < 150	< 470		
500000	40000	9000		280	1	< 140	75		480		6400 E		1600	70	200	1	71	< 470		< 140 < 140
100000	210000 10000000	49000 1100000		100	1	< 140	< 130	J	< 220		[120000] E		[220000]	D	290 < 400	•	(1 J < 150	< 470		< 140 < 140
100000		900		< 120	1	< 140	480]	< 220		[190000] E	١.		ם ם	300	ا ر	< 150	< 470		< 140
50000	4000 4000	900		450 190		41 J < 140	170	- 1	680	, 1	[2200]		[2100] : 5000	10	< 400	-	< 150 < 150	< 470		< 140
500000 100000	660	560		360		< 140 < 140	380	i	95 420	ر	[2200] < 120		5000	I	210	ر ا	< 150	< 470		< 140
500000	4000	900	İ	190			< 130	į	< 220		880		5000	ł	< 400		< 150	< 470	- 1	< 140
100000	660	660		< 120	,	< 140	× 130		< 220	- 1	45D		5000	[< 400		< 150	4 470		< 140
,4446	300	000		48		< 140	210	ĺ	160	,	200		5000	1	< 400		< 150	< 470		< 140
		<u> </u>		<u> </u>		· · · · · · · · · · · · · · · · · · ·			100			٠.		- 1						

E.3 Groundwater Data

1983-1984 Hydrogeologic Investigation

Table 1-2
Summary of Groundwater Results (1983)
SCCC, Kearny, NJ

Parameters	18	10	2 S	21)	3 S	31)	48	41)	5 S	51)
pH	8.4	6.3	9.3	5.6	8.8	5.3	11.4	4.8	· 11.4	2.0
Cunductivity (umhos)	1050	2150	5000	5000	2450	24(X)	5000	5000	SIXIO	5000
Total Chromium	<0.05	<0.05	7.7	0.3	().29	0.06	101.7	0.44	NA	44.3
Hexavalent Chromium	<0.1	<0.1	<0.1	<0.1	<1).1	<0.1	97.0	<0.1	NA	<0.1
Benzene	ND	125	ND	1000	65	670	ND	220	190	50
Chlorobenzene	ND	1850	1500	660	55	עא	93000	13900	450	ND
1,1,2-trichlorouthane	ND	ND	ND	ND	ND	ND	ND	30	ND	ND
1.1-dichloroethylene	טא	ND	ND	ND	ND	ND	NU	20	ND	ND
trans-1,2-dichloroethylene	ND	ND	מא	30	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	טא	מא	300	ND	310	ND	ND	NU	ND
Tetrachloroethylene	ND	DN	DN	ND	25	ND	ND	5350	ND	ND
Toluene	ND	ND	ND	435	ND	640	ND	טא	ND	ND
Trichtoroethylene	ND	UN	ND	20	35	ND	ND	13960	NU	ND
Total Xylenes	ND	ND	ND	745	55	1550	ND	ND	טא	ND
Acenaphthene	ND	ND	ND	טא	540	28	10	ND	ND	43(N)
Anthracene	ND	ND	ND	ND	630	64	10	ND	מא	120
Bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	ND	UN	22	31	12	ND
1.2-dichkorobenzene	ND	1500	ND	2700	ND	ND	ND_	4900	ND	UN
1,3-dichlorobenzene	ИD	3100	ND	1400	ND	ND	ND	CIN	ND	ND
1,4-dichlorobenzene	ND	4100	ND	37(X)	ND	ND	10	ND	ND	טא
Dimethyl plubalate	ND	ND	ND	ND	10	ND	ND	ND	ND	ND
Di-n-butyl phthalate	ND	10	ND	19	ND	NI)	ND	32	10	ND
Fluoranthene	ND	ND	ND	ND	86	ND	ND	טא	ND	ND
Flourene	ND	ND	ND	ND	570	ND	ND	(IN	ND	ND
Naphthalene	עא	10	ND_	ND	טא	53	510	(IN	ND	(IN
Phenanthrene	ND	ND	ND	ND	170	ND	ND	ND	ND	ND
1.2.4-trichlorobenzene	ND	10	ND	ND	ИD	ND	ND	NI)	10	ND
1,2-diphenyl hydrazene	טא	טא '	ND	ND	ND	ND	ND	נוא	ND	37
Detection Limits*	10/10	10/10	10/10	5/10	10/10	10/10	250/10	10/10	5/10	5/10

NA = Not Analyzed

ND = Not Detected

^{• =} First number is the detection limit for volatile organics, the second number is the detection limit for base-neutrals. Detection limits will vary with degree of contamination. Note: All concentrations in parts per hillion (pph), except where noted.

1990-1993 Remedial Investigation

TABLES-II SUMMARY OF ITIASE I GROUNDWATER ANALYTICAL DATA VOLATILES AND SEMIVOLATILES SCCC, KEARNY, NJ

LAB NUMBER	11/.39		IIA:		11/39	**	1 IA 39		IM3		11/39		IIA:		IIAX		11/39		11/43	938
SAMPLENUMBER	CONC	D.L.	CONC.	LIXIP D.L.	CONC	ZI. D.I.	MW-3 CONC.	И. D.L.	CONC.	UI. D.L.	OONC.	-	CONC.		CONC.		CONC.		MW	
VOC s (ug/L)	1 4.01.4	D.104	1001100		COLICS	12.12	CO, IC,		17014	17:12	CCAVC.	17.1.	CONC.	17.1%	ICOM.	D.L.	CONC.	D.I.,	CONC.	DJ_
Methyl chloride	CIN	100	NI)	100	NI)	250	CIN	100	ND	[(EX)	CIN	29)	ND	(0)	NID	250	NID	SCID	BMDI.	201
Dichloralifluarumethane	CIN	100	NI)	100	ND	250	10.6	10.0	ND	(UK)	CIN	29)	ND	100	-Ni	290	- KID	5(1)	NI)	200
Vinyl chloride	(IN	100	NI)	100	NID	290	ND	10.0	ND	IIKKI	CIN	251	NI)	1(0)	- NI)	29)	669	500	- NI)	20
Methylene chloride	(IN	2.8	ND	2.8	81.4	70	ND	2.8	415	280	(B)	7()	38.8-B	28	79.8	70	223	14+B	ND	5.
1,2-Trans-dichloroethylene	(IN	1.6	MD	1.6	NI)	411	ND	1.6	CIN	10	12)	40	ND.	16	NID	40	244	80	ND	1
Trichlomethylene	ND	1.9	ND	1.9	NI)	48	ND	1.9	ND ND	190	NI)	48	-NI)	19	BMDL	18	5270	95	ND	3
his (Chlorum ethyl)ether	NI)	100	NID	100	ND:	250	ND)	100	NID	LOVE	NB)	29)	NI	1(0)	CIN	291	NI)	5(1)	- ND	20
Benzene	NI)	4.4	NI)	4.4	190	110	DMD1.	4.4	519	44)	TIMEDI.	110	534	11	102	- 	388	230	31.1	
Tetrachkovethylene	NI)	4.1	CIN	4.1	NID	100	ND	4.1	NI)	400	NI)	10	NI)		NID.	iai	1590	210	ND	- <u>8</u> .
Tolsene	NI)	6.0	NI)	6.0	DMDL.	190	ND)	60	ND	6(1)	NI)	191	912	G	190	191	NI	3(1)	14.6	12
Chlurcharzene	ND ND	6.0	NI)	6.0	882	190	65.1	6.0	1230	6(1)	414	190	ICIMIT.	60	CIN	191	3060	30	ND.	1-12
Ethylhenzone	NI	7.2	NI)	7.2	ND	181	NI)	7.2	ND	730	NI)	181	309	72	243	181	16)	3(0)	NI)	1-15
BNA's (up/L)			<i>ن</i> ــــنـــا	· · · · · · ·			7.7.		<u> </u>						1	ata.		,,XE/	1 (4) 2	1_!*
Phenol	(17	. 1.6	NI)	1.7	73.5	1.8	ND	1.8	1320	8.9	CIM T	16	888	8.2	53700	17	3600	37	68700	8
3-Chlorothenol	NI)	1.6	ND	3.7	NI)		NI)	3.9	NI)	20	ND	36	NI)	18	NI)	38	NO)	83)	NI)	17
2,4Dimethylphenol	NI)	2.9	ND	3	3.82	3.3	NI)	3.2	5400	16	NI)	29	28500		83200	31	581	66	7930	100
2,4Dichkaughers#	NI)	2.9	ND)	3	99	3.3	145	3.2	77.3	16	142	29	NI)	15	ND	31	NE)	166	NI)	1-16
2,4,6-Trichkmybensl	NI)	2.9	ND	3	NI)	3.3	ND	3.2	ND	16	CIN	29	NI)	15	NI)	1 - 31	Nt)	- 66	NE)	-
1,3 Dichlorohenzone	(IM	2.1	NE)	2.1	18500	2.3	24600	2.2	26900	11	6030	21	CIN	10	152	22	12500	16	-137	Hii
1,4Dichlorohenzone	BMDI	4.8	KIME	4.9	21900	5.3	29500	5.2	29200	26	10400		(IN	24	279	5()	12300	110	Ni	25
1,2-Dichlombenzene	2.58	2.1	DMD)	2.1	19600	2.3	30300	2.2	28100	1 -11	9650	21	NI)	10	1570	22	13800		- 111	-=
1,2,4-Trichlandenzone	(IN	2.1	MD	2.1	89.6	2.3	127	2.2	107	 	ND	-21	NI)		NID	222	14400	46	NI)	├ ─!:
Naphthalone	(IN	1.7	NI)	1.8	111	1.9	55.8	1.9	70.8	9.5	19.6	1	12700	8.7	23700	18	4970	70	58200	·:
Acenaphthylene	· ND	3.8	NI)	3.9	NI)	4.2	ND	4.1	ND	21	ND	38	52.9	19	96.3	40	ND	85	NID	!! !! !!
Acensphthene	NI)	2.1	(IN	2.1	6.43	2.3	(IN	2.2	BMDI.	111	-NI)	21	264		548	22	TIMED I.	1	2910	
Fluxene	NI)	2.1	ND	2.1	5.51	2.3	NI)	2.2	ND		NI)	21	136	10	3413	22	ND	16	NI	1-::
Llexachlorotenzene	(IN	2.1	NI)	2.1	(IN	2.3	ND	2.2	ND	11	NI	21	NI)		ND	22	NI)	16	NI	- <u>!</u> !
Phenasthene	NI)	5.9	NI)	6.1	ILIMIN.	6.5	NI)	6.4	ND	33	NI)	39	68.8	29	216	61	NI)	1,10	לוא	1-3
Anthracene	CIA	2.1	CIN	2.1	ND	2.3	NI)	2.2	ND	11	NID	21	23.4	10	69.3	22	NI	16	- KID	l Ti
Fluventhene	NI)	2.4	CIN	2.5	NI)	2.7	NI)	2.6	ND	13	NIX	24	ND	12	29.7	25	ND-	51	NID	
Pyrene	NI)	2.1	ND	2.1	Nt)	2.3	M)	2.2	NI)	11	NID	21	NID	10	BMDI.	722	NI)	16	ND.	1-11
bis(2-Ethylhexyl)phthalate	ND	- 11	_ ND	11	NI)	12	NID	12	CIN	60	NI)	110	11100	54	(IN	110	MD	240	TND	57
Phenolics	MD	0.05	(IN	0.05	ND	0.05	(IN	0.05	6	0.05	0.051	0.05	13	0.05	154	0.05	1 1 1 1 1	0.05	310	0.0

CONC.—Concentration of Compound
D.L. – Detection Limit
NA – Not analyzed
ND + Not detected

BMDL-Present felow detection limit, estimated concentration not reported by laboratory

- Compound also detected in laboratory blanks

TABLES-11 (Continued) SUMMARY OF HIASELGROUNDWATER ANALYTICAL DATA VOLATILES AND SEMIVOLATILES SCXX, KEARNY, NJ

LAB NUMBER	11A39	39	11/439	58	11/39	52	11/3950	0	IIA:	3955	11/39	57	11/139	54	7 IA 305	6	11439	53	114.39	si I	IIA3	nik
SAMTENIMBR	MW	II.	MW-I	nL]	MW-1	ni	MW-12	1.	MW.	-12J	MW	М.	MW-1	Q)	MW-14	i.	MW	LE!	MW		MW	
	CONC.	D.I_	CONC.	D.L.	CONC.	D.I.,	CONC.	D.L.	CONC.	D.I.	CONC.	D.L.	CONC.	D.L.			CONC.			D.L.		
VOC's (ug/L)																			<u> </u>	17:1		-14:22
Methyl chloride	CIA	1(X)	NI)	200	ND	2(1)	ND	250	ND	300	267	2(1)	(IN	10.0	CIM	100	ND	100	ND	I(XX)	ND I	10.0
Dichkrodifluoremethane	NI)	100	NIX	2(1)	(1)	2(1)	NI)	250	ND	2(1)	CIN	2(1)	CIN	10.0	CIN	100	ND	100	ND	(CK)	CIN -	100
Vinyl chkwide	ND	100	ND	2(1)	NE)	2(1)	NI)	2.91	(IN	2(1)	CIN	2(1)	ND	10.0	(IN	100	NI)	100	(IM	KIKI	ND)	100
Methylene chloride	38.9-B	28	73.3	56	(IN	56	(IN	70	101	3(1)	CIN	56	NI)	2.8	(IN	2.8	BMDI.	2.8	NI)	28)	ND	2.8
1,2-Trans-dichloruethylene	MD	16	CIA	32	174	32	M)	40	NID	3(8)	CDA	32	NI)	1.6	CIN	1.6	M)	1.6	ND	iai	-ND	1.6
Trichtoroethylene	M)	19	173	38	96	.38	106	48	KIN	3(1)	79	.38	(IN	1.9	121	1.9	NI)	1.9	NI	1933	ND	1.9
bis(Chlorenethyl)ether	CIN	100	NI)	2(0)	NI)	2(1)	_ KID	251	NI)	2(1)	CIN	2(1)	_NI)	[0.0]	CIM	100	NI)	100	NI)	(IIX)	NID	10.0
Henzere ·	108	11	467	88	353	88	337	_110	NI)	1(1)	118	- <u>88</u>	BMDL.	4.4	131	4.4	4.59	11	3010	440	ND	4.4
Tetrachloroethylene	(IM	11	DMDE.	82	96.7	82	NT)	100	NB)	iā	IIMI)I.	- 82	NI	4.8	74.1	4.1	ND	4.1	ND	410	NI)	4.1
Toluene	108	60	IKDMIT.	120	BMDI.	120	1290	150	ND	100	BMDI.	131	IIMUDI.	6.0	115	6.0	20.7	6.0	NI	6(X)	NI	6.0
Chimhenzene	111	60	1110	130	796	131	743	150	ND	1(8)	2(1)	131	MI)	6.0	134	6.0	NID	6.(1	1830	6411	NID	6.0
Ethylhenzone	HMDI.	72	NI)	140	NID	1#)	240	180	(IN	100	ND	141	ND	7.2	21.1	7.2	51.1	7.2	NI)	731	NI)	7.2
BNA's (ug/L)									A	-	-	******	•									
Phenoi	NID	16	19100	33	445	1.6	42600	82	6.62	1.7	210000	18	19300	1.7	33500	84	(IM	1.7	783	1.7	NI	1.6
2-Chkerghenol	NI)	.36	(IN	73	MD	3.6	(B)	181	M	3.7	(IN	39	NO.	3.7	NID	190	(D)	3.7	63.3	3.7	-NI)	3.6
2.4Dimethylphonol	25900	30	1180	59	1830	2.9	20900	191	33.7	3	22800	32	808	3	17500	[31	53.3	3	NI)	-	NID	3
2.4Dictionsphend	(IM	30	NI)	59	ND	2.9	(IN	191	M)	3	ND	32	ND		NI)	190	NE)	3	321	3	NE	1
2.4,6-Trichlorophensi	ND	30	ND	59	ND	2.9	CDN	190	15.5	3	NID	32	NI)	- 3	CIN	[31]	ND	3	ND	3	(IN	1
1,31) ichloruhenzene	60.4	21	1570	42	892	2.1	1130	ta	65.9	2.1	239	22	25.4	21	2650	110	4.1	2.1	15200	2.1	78.6	2.1
1,4Dictiorohenzene	110	48	2310	97	1910	4.8	2560	240	141	4.9	497	52	51.7	4.9	4610	290	9.56	4.9	19500	4.9	100	4.B
1,2DicHowhenzone	156	21	6650	42	5250	2.1	5290	IO	145	2.1	771	22	74.2	2.1	2780	110	5.2	2.1	20600	2.1	140	2.1
1,2,4-Trichtorohenzene	ND	_ 21	6070	42		2.1	1520	1(0)	128	2.1	3520	- <u>22</u>	166	2.1	14000	330	41.8	2.1	81.2	2.1	(IM	2.1
Naptehalene	4990	18	7150	35	9660	1.7	11700	87	426	1.8	16400	19	5020	1.8	5020	93)	6540	1.8	20.4	2.1 1.8	CIN T	1.8
Accesphthylene	(IN	38	NID	77	_ND	3.8	BMDI.	190	8.7	3.9	NI)	41	ND	3.9	NII	2(1)	6.88	3.9	NI	3.9	CIM	3.8
Acenaphthene	33.7	21	NI)	42	22.4	2.1	\$ (34)	100	117	2.1	308	22	25.5		NI)	1 (0	238	2.1	(IN	2.1	CIN	2.1
l'iluarene	(IN	21	ND	42	19.3	2.1	BMIN.	(4)	39.7	2.1	NI)	22	2.9	_ 2.1	(IM	110	57.8	2.1	(IN	2.1	(IN	2.1
1 lexachiorobervene	NI)	21	NID	42	ND	2.1	BMD1.	(0)	NI)	2.1	NI)	22	NI)	2.1	NI)	1 340	ND	2.1	NI)	2.1	(IM	2.1
Phenanthrene	ND	59	ND	(2)	15.9	5.9	EIMIDL.	290	41.1	6	NI)	64	BMDI.	_ 6.1	CIN	3(1)	27	6	NID	6	(IM	5.9
Anthracene	CIM	21	ND	42	9.66	2.1	NI)	100	3.63	2.1	NI)	22	ND	2.1	NI)	110	4.2	2.1	ND	2.1	CIN "	2.1
Fluvanthese	ND	24	NI)	48	(IN	2.4	(IN	130	4.26	2.4	(DI	26	NI	2.5	NI)	131	IMIDI.	2.4	NI)	2.4	(10)	- <u>2.4</u> 2.1
Ругене	_ ND	21	MD	42	_ND_	2.1	NI)	100	2.1	2.1	NI)	22	NI)	2.1	NI)	1141	HEDMI)	2.1	KIN	2.1	CIM	2.1
bis(2-Ethylhexyl)phthalate	ND	110	NID	220	ND	1)	NI)	541	ND	11	(IN	131	NI)		ND	Scal	(IN	11	(IN	11	588	11
Phenolics	3620	0.05	96	0.05	5	0.05	110	0.05	NA	N	2660	0.05	NA.	NA	57	0.16	0.17	0.05	NI)	0.05	ND.	0.05

CONC.—Concentration of Compound
D.L. —Detection Limit
NA — Not analyzed
ND — Not detected

BMDL - Present below detection limit, estimated concentration not reported by laboratory

- Companied also detected in laboratory blanks

TABLES-11 (Continued) SUMMARY OF ITIASE I GROUNDWATER ANALYTICAL DATA VOIATILIS AND SIMIVOIATILIS SCXX; KIARNY, NI

LAB NUMBER	11A394	3	11/1/39	47	IIA	3959	IIAX	X1	HAX	×n	1114	3963	114	3962
SAMPLE NUMBER	FD-I		FB-2			1-3	TB-I		18-2		TI		IRIPE	
1	CONC.	D.L.	CONC.		CONC.		CONC.						TANKS E	ANV B
VOC s (ug/L)		<u> </u>	*******	C J.L.4	F-0110		LOIK.	17.1.	wit.	12.14	LUIK.	12.10	KUMU.	17.12
Methyl chloride	ND	100	ND	100	CIN	tao	ND	10.0	MD:	iaō	NI)	liao	(IN	100
Dichlorodif lum methane	ND	10.0	ND	100	ND	100	NID	100	NI	iao	NI	l iãa	ND.	100
Vinyl chloride .	(IN	10.0	MD	100	NIX	10.0	ND	100	- NI)	100	NI)	liao	ND)	100
Methylene chloride	3.11-B	2.8	2.91-13	2.8	NI	2.8	3.5-B	2.8	3.55-II	2.8	- KI)	2.8	ND	2.8
1,2-Trans-dichlomethylene	ND	1.6	ND	1.6	CIN	1.6	NI)	16	ND	1.6	NO	1.6	-Wij	— <u>±.6</u> 1.6
Trichkroethylene	CIN	1.9	ND	1.9	CIN	1.9	NI	1.9	ND CIN	1.9	NI)	1.9	ND	1.9
bis(Churenethyl)ether	NID	100	ND	100	ND	100	ND	100	ND	100	ND	100	NIX	100
Benzene	NI)	4.4	NID	4.4	CIN	4.4	ND	4.4	NI)	4.4	ND	144	NI)	4.4
Tetrachkoroethylene	(04	4.1	NID	4.1	ND	4.1	ND	11	Nt)	4.7	- iii	177	-ND	4.1
Toluene	n-icimin	6.0	ND	6.0	CD	6.0	ND	60	NE)	6.0	NI	6.0	- NI)	6.0
Chkwohenzene	ND	6.0	ND	6.0	CIN	6.0	NI)	6.0	NID	6.0	ND (IN	6.0	NI)	6.0
Ethylhenzoic	ND	7.2	NI)	7.2	ND	7.2	NI)	7.2	ND)	7.2	ND	7.2	NIX	7.2
BNA's (ug/L)							<u> </u>		1407	1 112	1.111.2	<u> </u>	1_147	L
Phenoi	ND.	1.6	ND	2	ND	1.6						1		·
2-Chlorophenol	ND	3.6	ND	4.5	ND	3.5				-	\vdash	 	 	
2,4Dimethylphenol	NE)	2.9	ND	3.6	ND	2.8		-		-			 	
2,4Dichloropherol	ND	2.9	ND	36	ND	2.8		-				 —	 	
2,4,6-Trichlorophenol	NO)	2.9	ND	3.6	MD	2.8				-		—	 -	!
1,3Dichlorobenzone	ND	2.1	ND	2.6	ND	2						<u> </u>		
1,4Dictiorobenzone	ND	4.8	ND	5.9	ND	4.6				 - 		-	 	
1,2Dictiorobenzase	ND	2.1	ND	2.6	ND	2						 - 	 	<u> </u>
1,24-Trichlorotenzene	(M	2.1	ND	2.6	ND	2						 	 	<u> </u>
Naphhalene	ND	1.7	ND	2.2	ND	1.7	-	\vdash		\vdash		 -	 	
Acenaphthylene	ND	3.8	ND	4.7	ND	3.7	***	-		-		╌		
Acenspirthene	ND	2.1	ND	2.6	ND	2				-		-	 	
Fluorene_	ND	2.1	ND	2.6	CIN	2								-
l fexachtoroberzene	(IM	2.1	ND	2.6	ND	2				-				
Phenanthrene	(IN	5.9	NO	7.3	CIN	5.7								
Anthracene	CIN	2.1	ND	2.6	ND	2					-	-		
Fluoranthene	NID	2.4	ND	3	ND	2.3				 		 		
Pyrene	ND	2.1	ND	2.6	ND	2				-		 - 		
his (2-Ethylhexyl) phthalate	(IM	11	ND	14	NI	11				 - 		-		
Phenolics	NI)	0.05	ND	0.05	ND	0.05				\vdash			l	

CONC.-Concentration of Compound
D.L. -Detection I.in it

NA - Not analyzed ND - Not detected

BMDL - Present below detection limit, estimated concentration not reported by laboratory

B - Compound also detected in laboratory blanks

TABLE 5-11 (Continued) SUMMARY OF PHASE I GROUNDWATTER ANALYTICAL DATA METALS SCCC, KEARNY, NJ

LAB NUMBER SAMPLE NUMBER	11A39			3936	11/39	. •	1	3937	IIA3		IIA3	943	IIA:	3940
CERTAIN LTS MODELLING	MW-			ADCI.I	MW	21.	MW	<i>1</i> -31.	MW	41.	MW-	SL	MW	6L
	CONC.	D.L_	CONC	D.L.	CONC	D.1_	CONC.	1).[CONC.	D.L.	CONC.	D.I.,	CONC	D.L.
Mctals (mg/l.)											<u> </u>			
Antimony	ND	0.06	ND	0.06	ND	0.06	ND	0.06	ND	0.06	ND	0.06	ND	0.06
Arsenic	BMDL	0.05	BMDL	0.05	0.047	0.01	0.13	0.01	0.02	0.02	0.1	0.01	0.042	0.03
Beryllium	0.0014	0.001	0.0013	0.001	ND	0.001	ND	0.001	0.0022	0.001	0.0029	0.001	BMDL	
Cadmium	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	0.0023	0.002		0.001
Chromium	1.87	10.0	1.37	0.01	0.039	0.01	0.014	0.01	1.4	0.01	1.89	0.01	ND O	0.002
Copper	0.026	10.0	0.021	0.01	0.015	0.01	0.011	0.01	0.015	0.01	0.046	-	0.18	0.01
i ead	NI)	0.075	ND	0.075	BMDL.		ND	0.075		0.075		0.01	0.014	0.01
Mercury	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.002	BMDI.	0.075	NI)	0.075
Nickel	0.027	0.02	0.028	0.02	BMDL	0.02	BMDL	0.02	0.045		NI)	0.0002	ND	0.0002
Sclenium	BMDL	0.025	IIMDI.	0.005	ND	0.005	NI)	0.005	NI)	0.02	0.023	0.02	0.023	0.02
Silver	ND	0.01	ND	0.01	לוא <u>י</u>	0.01				0.01	NI)	0.025	BMDI.	0.005
Thatlium	ND	0.01	ND	0.01	ND		NI)	0.01	ND	0.01	BMDI,	0.01	BMDL.	0.01
Zinc	0.037	0.02	0.034			0.01	ND	0.01	<u> dn</u>	0.01	_ND	0.01	(IN	0.01
Chromium, Hexavalent				0.02	BMDI.	0.02	DMDL	0.02	0.05	0.02	0.068	0.02	0.074	0.02
	ND	0.05	ND	0.05	MD	0.05	ND	0.05	ND	0.05	ND	0.01	ND	0.01
Cyanide	0.034	0.025	· ND	0.025	ND	0.025	0.035	0.025	ND	0.025	0.08	0.025	0.058	0.025

CONC. - Concentration of Compound
D.L. - Detection Limit

ND -Not detected

BMDL-Present below detection limit, estimated concentration not reported by kilocatory

TABLE 5-11 (Continued) SUMMARY OF PHASE I GROUNDWATER ANALYTICAL DATA METALS SCCC, KEARNY, NJ

LAB NUMBER	11/39	42	11/19	45	11/39	38 .	11A39	39	11/3958		11/39	2	11/1/3950	
	MW-7		MW		MW !	X.	MW-	IOL.	MW-111		MW-1	เบ	MW-121	
SAMPLE NUMBIER	CONC.	D.L.	CONC.	D.L.	CONC.	D.1_	CONC.	D.L.	CONC.	D.1_	CONC.	D.L.	CONC.	D.I.,
Metals (mg/l.)						4.05	1 5.05 1	000	NII .	0,06	0.39	0.06	ND	0.06
Antinony	ND	0.06	ND	0.06		0.06		0.06	ND		1		BMD1.	0.05
Arsenic	BMDL	0.05	BMD1.	0.02		0,25	BMDI.	0.05	0.066	0.01	0.13	10.0		-
Beryllium	0.0028	0.001	0.0021	0.001	0.145	0.001	0.017	0.001	0.003	0.001	0.0026	100.0	0.0028	0.001
Cadmium	ND	0.002	ND	0.002	ND	0.01	ND	0.004	0.013	(1,002	0.014	0.002	0.01	0.002
Chromium	0.87	0.01	0.71	0.01	15.8	0.01	4.91	0.01	1.16	0.01	6.64	0.01	0.17	0.01
	0.018	0.01	0.064	0.01	0.57	0.01	0.051	0.01	0.037	0.01	0.9	0.01	0.019	0.01
Copper	ND	0.075	BMDL	0.075	0.61	0.075	0.14	0.075	0.34	0.075	12.5	0.075	BMDL	0.075
1 civil	ND	0.002		0.0002		0.0002	ND	0,0002	0.00041	0.0002	0.142	0.0002	0.00023	0.0002
Mercury	0.067	0.02		0.02		0.02	0.93	0.02	0.46	0.02	0.48	0.02	0.3	0.02
Nickel.		0.005	ND	0.005		0.025		0.025	ND	0.005	ND	0.025	ND	0.05
Selenium -	ND_			0.01	DMDT.	0.01		0.01	BMDL.	0.01	BMDL.	0.01	BMDI.	0.01
Silver	ND	0.01	ND			0.01	. <u>}</u>	0.01	ND	0.01	ND	0.01	ND	0.01
Thallium	ND	0.01	ND	0.01	BMDI.	4 		0.02	0.54	0.02	·	0.02	0.31	0.02
7.inc	0.039	0.02		0.02	· • · · · · · · · · · · · · · · · · · ·	0.02			NID	0.01	ND	0.05	ND	0.01
Chromium, Hexavalent	ND	0.5		0.05		0.5		0.05	·			0.025	0.07	0.025
Cyanide	0.092	0.025	0.037	0.025	0.028	0.025	0.067	0.025	0.055	0.023	0.197	17.12.1	1 0.07	17.132.1

CONC. - Concentration of Compound D.L. - Detection Limit

ND -Not detected

BMD1.-Present below detection limit, estimated concentration not reported by kiboratory

TABLE 5-11 (Continued) SUMMARY OF PHASE I GROUNDWATTER ANALYTICAL DATA METALS SCCC, KHARNY, NJ

LAB NUMBER	11A395		11A395 MW-1		11A3954 MW-13U		11A3956 MW-14L	1	11A39: MW-1		11A39: MW-1	- 1	11A3946 MW-15U	
SAMPLE NUMBER .	CONC.	-	CONC.	D.L_	CONC	D.I	CONC.	1	CONC.	D.I	CONC.	D.L.	CONC.	D.I
Mctals (mg/L)								0.00	0 (0)	0.06	ND	0.06	0.11	0.06
Antimony	BMD1.	0.06		0.06	0.062	0.06	ND_	0.06	0.18			0.01	0.024	0.01
Arsenic	BMDL.	0,01	BMDI.	0.1	ND	0.01	BMDL	0.05	0.035	0.01	BMDL		0.0031	0.001
Beryllium	BMDL	0.001	0.033	0.001	BMDI.	0.001	0.0054	0.001	0.0019	0.001	BMDL.	0.001		0,002
Cadmium	0.0055	0.(x)2	0.17	0.002	BMDL.	0.002	0.021	0.002	0.(X)76	0.002	0.01	0,002	0.0081	0.01
Chromium	2.3	0.01	67.3	0.01	7.15	0.01	0.9	0.01	20.3	0.01	0.023	0.01	4.2	
	0.077	0.01	0.35	0.01	0.022	. 0.01	0.058	0.01	0.23	0.01	0.021	0.01	0.26	0.01
Copper	0.6	0.075	0.35	0.075	ND	0.075	0.11	0.075	2.6	0.075	0.82	0.075	44.9	0.075
Lead	0.0014	0.0002		0.0002	0.00033	0.002	0.00023	0.0002	0.0347	0.0002	4	0.0002	0.00087	0.0002
Mercury	0.22	0.02		0.02	0.029	0.02	0.51	0.02	0.36	0.02	ND_	0.02	0.13	0.02
Nickel	ND ND	0,005	BMDI.	0.025	ND	0.005	ND	0.005	ND	0.025	NI)	0.025	ND	0.025
Selenium	ND ND	0.01		0.01	ND	0.01	BMDL.	0.01	IMI)I.	0.01	CIN	0.01	BMD1.	0.01
Silver			BMDL	0.01		0.01		0.01	NI)	0.01	ND	0.01	ND_	0.01
Thallium	ND_	0.01	4	0.02	0.028	0.02				0.02	0.054	0.02	0.62	0.02
Zinc	0.22	0.02			<u> </u>	0.01		0.01	3.32	0.01		0.01	0.088	0.01
Chromium, I lexavalent	0.081	0.01	ND	0.05		<u> </u>				0.025	_	0.025		0.025
Cyanide	ND	0.025	ND	0.025	0.025	0.025	0.073	U.02.1	U.U3 t	0.02.1	1 1117	1 47.442.7	1	

CONC. - Concentration of Compound D.L. - Detection Limit

-Not detected

BMDL-Present below detection limit, estimated concentration not reported by laboratory

TABLE 5-11 (Continued) SUMMARY OF PHASE I GROUNDWATTER ANALYTICAL DATA METALS SCCC, KHARNY, NJ

LAB NUMBER	1JA394	3	IIA3947		IIA3959	
SAMPLE NUMBER	173-1		FB-2		FB-3	
-	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.
Metals (mg/L)						
Antimony	ND	0.06	ND	0.06	ND_	0.06
Arsenic	ND	0.01	ND.	0.01	ND	0.01
Beryllium	ND	0.001	ND	0.001	ND	1 00.00
Cadmium	ND	0.002	_ ND_	0.002	ND	0.002
Chromium	ND	10.0	ND	0.01	BMD1-B	0.01
Copper	ND	0.01	BMDL-B	0.01	ND	0.01
Lead	ND CIN	0.075	ND	0.075	ND	0.075
Mercury	ND	0,0002	ND_	0.0002	DMDI-B	0.0002
Nickel	ND	0.02	ND	0.02	GN	0.02
Selonium	(IN	0.005	ND	0.005	CIN	0.005
Silver	ND	0.01	ND	0.01	ND	0.01
Thallium	ND	0.01	ND	0.01	BMDI-B	0.01
Zinc	ND	0.02	ND	0.02	BMD1-B	0.02
Chromium, Hexavalent	ND	0.01	ND	0.01	ND	0.01
Cyanide	ND	0,1	ND	0.025	ND	0.025

CONC. - Concentration of Compound

-Detection Limit

-Not detected

BMD!.—Present below detection limit, estimated concentration not reported by laboratory

B —Compound also detected in laboratory blanks

TABLE 5-12 SUMMARY OF PHASE II GROWNDWATER ANALYTECAL DATA VCI ATILIS, SIMIVCI ATILIS, AND MISTALS SCCC, KEARNY, NJ

LAB NUMBER SAMPLE NUMBER	CB2		CB-7		CB2			2196 W-5	CB21		CB:	2189		2190		2188
SAMPLE NUMBER	CONC.	DL.	CONC.	ี มน	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.	CONC.	_ות	CONC.	H0 D.L.	MW CONC.	-12 - D1.
VOC Compound (ug/i.)		LO-LA	4.04.00		car.	1,1,1,1	CANAL .		1 (14 (4C)	12:44	LCC4N.		CCAR.	LAL _e	CUR.	LUL.
Methylene chloride	25 JB	50	65 17	100	180 J	250	56 B	50	420 J l	500	32]	50	28	7-7-361	46 JB	100]
Vinyl chloride	ND	50	ND.	100	ND	250	ND	sö	350 1	SCIO	" ND	<u></u>	יי מוֹת ייי	25 25 25	-ND	
1.2-Dichloroethene	- ND	50	THE THE	100	- ND	250	ND.	50	··~ į̇̃į̇̃įį	5(X)	82 J	250			-: XX -	100
Trichlomethylene	ND	<u>s</u> ö	ND	100	40 3	250	ND	50	5600	500	ND	SÕ	- ND		52 J	
Benzene	55	50	56 3	100	250 J	250	23 J	50	430 J	500	85 1	250	160	25 25	260	[0)
Tetrachloroethylene	ND	50	'GN	100	ND	250	ND	50	2000	5(11)	40]	50)	ND CIN	25	ī.	100
Toluene	616	50	23 J	100	210 J	250	ND T	50	ND	SCIKI	ND		150	25	770	100
Chksobeazene	380	50	1100	100	300	250	310	50	5200	S(IC)	- NIS -	50	**** i 40		400	····io
Ethylbenzene	ND	50	ND	100	52 J	250	ND	50	ND	5(X)	ND	50 50 50	73	25 25	100	100
Carbon disulfide	ND	50	CIN	100	ND	250	ND	50	ND	5(10)	MD"	50	ND	25	TIN CIN	iai
Xylene (total)	NI)	50	CIN	toxi	95 J	250	HD T	50	120 J	SON	473	50 250	400	25	600	1(X)
Styrene	CIN	SO	CIN	1(X)	CIN	250	ND	50	ND	SOLO	'ÑĎ'	<u></u>	ND	25	92 J	ian
Accione	ND	\$1)	ND	[(X)	CIN	250	ND.	50	ND	SUC	500	250	310	75	CIN .	ioo
HNAs (ug/L)						,	* ****	g nga- 1+ 1	• •		** ** **				2222	
Phenol	CIN	560	NID	530	150 J	530	31]	62	2100	670	360000	56000	230000	31000	91000	26000
3-Chlorophenol	58 J	560	ND	530	NID	530	25 J	62	NID	670	CIN	56(1)	ND	620	CIN	2600
2-Methylphenol	670	560	ND	530	570	530	ND	62	450.3	670	18000	5600	58000	31000	38000	26(XX)
2,4-Dichlorophenol	180 J	560	120 J	530	ND	530	196	62	CIN	670	CIN	SG(R)	ČÌÑ	620	ND	2600
2,4,6-Trichlorophenol	CIM	560	ND_	530	ND	530	ND	<u>62</u>	CIN	670	CIN .	SGCKI	ND	620	ÜN.	2600
1,3-Dichlorobenzene	9800	2200	7500	2100	8000	2100	3000	620	15000	3300	CIN	SGOO	"ND	620	2800	26(1)
1,4-(Xichlorobenzene	14800	2210	11000	2100	11006	2100	4900	620	18000	3341	ND	SG(X)	380 J	620 620	5400	2600
1,2-Dichlorobenzene	13000	22110	11000	2100	9600	21(X)	5100	620	16000	33(N)	ND	SGOO	640	620	12000	2600
1.2.4-Trichkorobenzene	140 J	560	62 J	5.43	120 J	530	CIM	62	12000	33(x)	ND	SGOL	ND	620	5600	26(11)
Naphthalene	ND_	560	_ ND	530	68)	530	_ 514	62	7200	3.XX)	ND	5600	2400	620	19000	2600
Acenaphthalene	_ND_	560	_ ND	530	ND	530	_ ND_	62	ND	670	, ND	SGOO	ND	620	ND	2600
Accusphene	ND	560	ND_	530	ND		ND_	62	ND	670	ND	Score	ND	620	_ ND	26(11)
Fluorene	ND	560	ND	530	ND	530	_ND	62	_ 117_	670	ND	SGEE	NI)	620	ND.	2600
l lexichlorobenzene	ND	560	ND	530	NI	530	_ND_	62	NI)	67/1	ND.	5600	. ND	620	ĭ™NĎ .	2(d)
l'henathrene	ND	560	KIN	530	ND		ND_	62	NI	670	. ND	SGOO	CIN	620	ND	50m
Anthracene	_ND_	560	_ND_	530	ND		_ND_	62	ND.	670	ND	SGOO	ND	620	ND .	26(10
Fluoranthene	_ND_	560	- ND -	530	NU		- ND	<u>62</u>	_ND.	670	, ND	Scott	MIZ	620	. ND	2600
Pyrene	ND	560	_ CIM	530	NI		ND_	62	ND	67(1	(IX	SGIK	ИĎ	620	, MD	2600
bis(2-Ethylhexylphthalate	_MD_	560	_ <u>MD</u> _	530	NI		_ND_	62	ND	670	ND	5600	ND	620	ND_	2610
6-Methylphenol	_ND_	<u>560</u>	_ND_	530 530	710	530 530	ND	62	1700	670	170000	SGODO	200000	31000	140000	26000
2.4-Dimethylphenol	ND		_ ND			530	ND	62	920	. 670	6800	SGIII	31000 1	31000	38000	26(0)
2-Methylnaphthalene	ND	560	CIM	530	ND		- ND	62		670	ND	5600	960	620 620	1500 J	26(K)
Di-benzoluran	ND_	560	ND_	530	NU	530	I_ND_	62	ND	670	ND.	South	ND	[620	ND	26(X)
Metals (ng/L)	T	·					· · · · · · · · · · · · · · · · · · ·	I :::	1: 277		. 6675	i ii) iass		1 2221	:::1
Chromium	22.6	<u></u>	27.8	J0	1210	jō	5100	iō	1440	10	9560	10		10	118	10
[lead	7.74	J!	6.62	I!	1.78	L!	ND	1	41.6	j !	Į NI)	, ,	3.79]. I	8.52	1)

CONC. - Concentration of compound D.L. - Detection Limit

ND - Not detected

-Not analyzed NA

Listinated concentration of compound detected below the detection limit
 Analyte found in laboratory blank analyte

В

TABLE 5-12 (Continued) SUMMARY OF PHASE II GROWNDWATER ANALYTICAL DATA VOLATILES, SEMIVOLATILES, AND METALS SCCC, KEARNY, NJ

LAB NUMBER	СВ	2185		2191	CB3			2718		2186		2197		12200
SAMPLE NUMBER	MW	44L	MW-1	4L Dup	M	/- 15		Z-1	11/2		Field	Blank	Trip	Blank
	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.	CONC.	_D.I_	CONC.	DI.	CONC.	DL.
VOC Compound (ug/L)														
Methylene chloride	27 B	20	16 J	20	190 J	250	3 JB	10	6.1	10		10	71	10
Vinyl chloride	ND .	20	ND	20	ND	250	_ ND_		_ ND	10	ND		ND	10
1,2-Dichloroethene	CIM	20	ND.	20	ND	250	ND	10	QN	10	, ND	10	ND.	10
Trichlomethylene	71	20	75	20	ND	250	2 JB	10	CIN	10	ND	10	" ND	io
Benzene	140	20	140	20	1700	250	31	10	ND	10	ND.	iū	. WID	10
Tetrachloroethylene	24	20	21	20	ND	250	ND	10	ND_	10	_ ND	10	ND	10
Toluene	200	20	218	20	ND	250 250	_ND_	10	4.1	10	ND	10	ND	10
Chlorobenzene	48	20	51	20	1200	250	ND	10	ND	iō	CIN	10	ND	[
Ethylbenzene	55	20	63	20	_ND_	250	ND	10	CIM	10	ND	10	ĬΜŪ.	10
Carbon disulfide	25	20	30	20	CIN	250 250	_ND		ND.	10	ND	10	ND	10
Xylene (total)	200	20	250	20	ND		ND.	10	_ND	10	NID	10	ND	10
Styrene	ND	20	ND	<u>20</u> 20	_ ND	250	ND	10		10	WD.	10	∵ NÜ	10
Acelone	ND_	20	ND_	20	ND_	250	7.1	10	ND	in in	ND	10	ND	10
BNAs (Bg/L)														
Presed	31000	11000	29000	11000	280 J	560	ND	10	CIN	13	_ ND	10	NA.	NA.
2-Chlorophenol	ND	560	ND	560	58 J	560	ND	10	CIN	13	ND	16	NA	NA.
2-Methylrhenol	14000	11000	14000	11000	ND	560	ND	10	ND	13	ND	10	NA	NA.
2,4-Dichlorophenol	ND	560	ND ND	560	350 J	560	ND	10	ND	13	NID	10	NA	NA I
2.4.6-Trichlorumbenol	ND	\$60	ND	560	ND	560	CIN	10		i3	NI	10	NA	NA
1.3-Dichlorobenzene	1900	560	1400	560	21000	5600	NI	iñ			NI)	i io	NA	NA]
1.4-Dichlorobenzene	2700	560	2100	560	33000	5600	ND	10	ND	iii ii	Ni)	10	NA	NA
1.2-Dichlorohenzene	2100	560	1600	560	33000	56(X)	ND.	iō	ND.	13	ND	10	NA.	NA `
1.2.4-Trichloruhenzene	26000	11000	21000	11000	190 J	560	CIN	10	NID	13	, KID	10	NA.	NA
Nanhthalene	6400 J	11000	4700	560	ND	560	61	10]]]	ND	10	NÃ	NA
Acenaphthalene	ND	560	ND	560	ND	560	ND	10		13	ND_	10	NA.	NA.
Acenarthene	180 J	560	140 J	560	ND.	560	2	10		13	NID	10		NA.
Pluosene	32 3	560	NID	560	ND	560	ND	10		13	ND	to		NA .
I jezachlorohenzene	ND	560	ND	560	ND	560		10		13	ND	10		NA.
Pressivene	NID	560	ND	560	ND	560	ND_	10		13	NID	10	B - + + + + + + + + + + + + + + + + + +	NΛ
Anthracene	_ CIN _	560	ND	560	ND	560	ND	10	ND	13	ND	I I I		, NA
Flucranthene	ND	560	CIK	560	ND	560	2	. 10			ND.	10		. NA
Pyrene	ND	560		560	ND	560		10		13	ND.	10		NΛ
bis(3-Ethylhexylphthalate	ND	560		560	MD	560				13	1]		NA .
4-Methylphenol	48000	11000	46000	11000	_ ND	560		10		13	NID	. 10		NA.
2,4-Dimethylphenol	18000	11000	17000	11000	ND	560		10		13	ND.			NA
2-Methylnaphthalene	770	560		560		560		10	(IM	[]3		10		NA
Di-beazoluran	69 1	560	ND	560	ND	560	CIN	10	ND_	13	ND	10	NA.	NA
Metals (vg/l.)														
Chromium	272	10		10		10		10		1	ND	10		ŅΛ
Lead	21.2	i	ND	1	848		61.1		13.7	1	_ ND] !	NA	, NA

CONC. - Concentration of compound D.L. - Detection Limit

ND - Not detected

-Not analyzed

Fishmated concentration of compound detected below the detection limit
 Analyte found in laboratory blank sample

GROUNDWATER ANALYTICAL RESULTS
STANDARD CHLORINE CHEMICAL COMPANY

	MEW JERSEY . WEST	SITE: AND CO	SC-INV-ICL	SC-15W-17L	SC-MW-17L
	CLASS NA	DATE:	2/2/99	272/32	2/2/99
	GROUNDWATER				
CONSTITUENT:	משעודי		3.3		DILUTED
(Units in ug/l)	CHITEMA ATTACK			The state of the s	SAMPLE
			< 50	< 10	< 1000
Benzo(a)pyrene	0.003		< 250	< 50	< 5000
2.4-Dinitrophenol	1 '-		< 50	< 10	< 1000
Dibenz(a.h)anthracene	0.003		< 50	< 10	< 1000
Benzo(a)anthracene	0.03		< 50 < 50	< 10	< 1000
4-Chloro-3-methylphenol			< 50 < 50	< 10	< 1000
Hexachloroethane	0.7		< 50 < 50	< 10	< 1000
Hexachlorocyclopentadiene	50		< 50 ·	< 10 < 10	< 1000
isophoron e	100	t .	< 50 < 50	< 10	< 1000
Acenaphthene	400	l		< 10	< 1000
Diethylphthalate	5000		< 50	< 10	< 1000
Di-n-butylphthalate	900		< 50	< 10	< 1000
Phenanthrene		}	< 50 < 50	< 10 < 10	< 1000
Butyl benzyl phthalate	100			< 10	< 1000
N-Nitrosodiphenylamine	7		< 50	< 10	< 1000
Fluorene	300		< 50	< 10	< 1000
Carbazole	ł	}	< 50	< 10	< 1000
Hexachlorobutadiene	1		< 50	< 50	< 5000
Pentachlorophenol	0.3		< 250	< 10	< 1000
2,4,6-Trichlorophenol	3		< 50	< 50	< 5000
2-Nitroaniline			< 250	< 10	< 1000
2-Nitrophenol			< 50 6 J	12	< 1000
Naphthalene		;	T T	< 10	< 1000
2-Methylnaphthalene	` ·		< 50 < 50	< 10	< 1000
2-Chloronaphthalene			< 50	< 10	< 1000
3.3'-Dichlorobenzidine	0.08		< 50	< 10	< 1000
2-Methylphenol	1	j		[3800] E	[12000] D
1,2-Dichlorobenzene	600		330	25	< 1000
2-Chlorophenol	40		< 50	< 50	< 5000
2.4,5-Trichlorophenol	700		< 250 < 50	< 10	< 1000
Nitrobenzene	3		1	< 50	< 5000
3-Nitroaniline		ļ	< 250	< 50	< 5000
4-Nitroaniline		1	< 250	< 50	< 5000
4-Nitrophenol	}		< 250	< 10	< 1000
4-Bromophenyl phenyl ether		J	< 50	< 10	< 1000
2,4-Dimethylphenol	100)]	< 50	< 10	< 1000
4-Methylphenol	<u>_</u>	İ	< 50		[11000] D
1,4-Dichlorobenzene	75	i	[540]		< 1000
4-Chloroaniline			< 50	< 10	< 1000
Phenot	4000		< 50	< 10	< 1000
Bis(2-chloroethyl)ether	0.03	!	< 50	< 10	< 1000
Bis(2-chloroethoxy) methane		1 .	< 50	< 10	< 1000
Bis(2-ethylhexyl)phthalate	1 3		< 50	< 10	< 1000
Di-n-octylphthalate	100		< 50	< 10	< 1000
Hexachlorobenzene	0.02		< 50	< 10	
Anthracene	2000		< 50	< 10	< 1000
1,2,4-Trichlorobenzene			< 50	[17]	< 1000
2,4-Dichlorophenal	20		< 50	6 J	< 1000
2,4-Dinitrotoluene	0.05	5	< 50	< 10	< 1000
Pyrene	200) ·	< 50	< 10	< 1000

TABLE 3-3

GROUNDWATER ANALYTICAL RESULTS STANDARD CHLORINE CHEMICAL COMPANY

CONSTITUENT:		DATE:	8C INV-18L 27298	SC-MW-17L 2/2/99	SC-NW-17L 27299 DILUTED SAMPLE
Dimethylphthalate	7000		< 50	< 10	< 1000
Dibenzofuran			< 50	< 10	< 1000
Benzo(g,h,i)perylene		1	< 50	< 10	< 1000
Indeno(1,2,3-cd)pyrene	0.03		< 50	< 10	< 1000
Benzo(b)fluoranthene	0.03		< 50	< 10	< 1000
Fluoranthene	300		< 50	< 10	< 1000
Benzo(k)fluoranthene	0.03		< 50	< 10	< 1000
Acenaphthylene	l i	<u> </u>	< 50	 < 10	< 1000
Chrysene	0.03		< 50	< 10	< 1000
4.6-Dinitro-2-methylphenol	<u> </u>		< 250	< 50	< 5000
1.3-Dichlarobenzene	. 600		460	[4100] E	[7400] D
2.6-Dinitratoluene			< 50	< 10	< 1000
N-Nitrosodi-n-propylamine	0.005		< 50	< 10	< 1000
4-Chiorophenyl phenyl ether]		< 50	< 10	< 1000
2,2'-oxybis(1-chloropropane)	ŀ	:	< 50	< 10	< 1000

^{[] -} Indicates sample concentration greater than New Jersey Class II-A Groundwater Quality Criteria.

J - Estimated concentration less than the method detection limit.

D - Sample concentration determined by analysis of diluted sample.

E - Estimated minimum value, concentration greater than instrument calibration range.

E.4 Bedrock Groundwater Data

TABLE 2-1A

FORMER PRODUCTION WELL GROUNDWATER ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL COMPANY

SITE: SAMPLE ID: DATE: DEPTH (R):		SC-PW PW-88 10/8/98	*SC-PW *PW-228 10/8/98 \$228	SC-PW PW-360 10/8/98 360
CONSTITUENT:	- CINU	ve management in the	Wy 222, 55-55-	
1,1,1-Trichloroethane	ug/L .	0.5 U	0.5 U	0.5 U 0.9 U
1,1,2,2-Tetrachloroethane	ug/L	0.9 U	0.9 U	1.9 U
1,1,2-Trichloroethane	ug/L	1.9 U	1.9 U	0.6 U
1,1-Dichloroethane	ug/L	0.6 U	0.6 U	1.1 U
1,1-Dichloroethylene	ug/L	1.1 U	1.1 U	1.1 U
1,2-Dichloroethane	ug/L	1.3 U	1.3 U	0.5 U
1,2-Dichloropropane	ug/L	0.5 U	0.5 U	
2-Hexanone	ug/L	3 บ	3 U	3 U
Acetone	ug/L	38 B	10 B	6.2 JB
Benzene	ug/L	0.7 U	0.7 U	0.7 U
Bromodichloromethane	ug/L	0.8 U	0.8 U	0.8 U
Bromoform	ug/L	2.5 U	2.5 U	2.5 U
Carbon disulfide	ug/L	2.4 U	2.4 U	2.4 U
Carbon tetrachloride	ug/L	1 ป	1 U	1 U
Chlorobenzene	ug/L	1.1 U	1.1 U	1.1 U
Chloroethane	ug/L	1.3 U	1.3 บ	1.3 U
Chloroform	ug/L	0.8 U	0.8 U	0.8 U
cis-1,2-Dichloroethylene	ug/L	0.8 U	0.8 U	0.8 U
cis-1,3-Dichloropropene	ug/L	0.7 U	0.7 U	0.7 U
Dibromochloromethane	ug/L	1.7 U	1.7 U	1.7 U
Ethylbenzene	ug/L	2.2 U	2.2 U	2.2 U
Methyl bromide	ug/L	2.3 U	2.3 U	2.3 U
Methyl chloride	ug/L	7.7 U	7.7 U	7.7 U
Methyl ethyl ketone	ug/L	2.5 JB	2.4 JB	2.5 U
Methyl isobutyl ketone (MIBK)	ug/L	2.7 U	2.7 U	2.7 U
Methylene chloride	ug/L	1.2 U	1.2 Ų	1.2 U
Styrene	ug/L	1.8 บ	1.8 U	1.8 U
Tetrachioroethylene	ug/L	0.8 U	0.8 U	0.8 ป
Toluene	ug/L	0.8 U	0.8 U	0.8 U
trans-1,2-Dichloroethene	ug/L	0.7 U	. 0.7 ป	0.7 U
trans-1,3-Dichloropropene	ug/L	1.5 U	1.5 ป	1.5 U
Trichloroethylene	ug/L	0.6 บ	0.6 U	0.6 U
Vinyl chloride	ug/L	1.2 U	1.2 Ų	1.2 U
Xylenes	ug/L	1.3 U	1.3 ป	1.3 U

U indicates constituent not detected at listed detection limit.

B indicates constituent detected in associated blank.

J indicates estimated constituent value.

TABLE 2-1B

FORMER PRODUCTION WELL GROUNDWATER ANALYTICAL RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL COMPANY

SITE: SAMPLE ID: DATE: DEPTH (ft):	UNITS	SC PW PW-88 10/8/98 1 88	SC-PW PW-228 10/8/98 2,228	SC-PW PW-360 10/8/98
CONSTITUENT: 🅸	ETHORY STRUITS		, partie 1, 12	
SEMI-VOLATILES			0.44.11	0.44 U
1,2,4-Trichlorobenzene	ug/L	0.44 U	0.44 U	0.44 U
2,4,5-Trichlorophenol	ng/Ľ	0.42 U	0.42 U 0.58 U	0.42 U
2,4,6-Trichlorophenol	ug/L	0.58 U		0.54 U
2,4-Dichlorophenol	ug/L	0.54 U	0.54 U	0.54 U
2,4-Dimethylphenol	ug/L	0.54 U	0.54 U 12 U	12 U
2,4-Dinitrophenol	ug/L	12 U	1	0.28 U
2,4-Dinitrotoluene	ug/L	0.28 U	0.28 U	0.28 U
2,6-Dinitrotoluene	ug/L	0.39 U	0.39 U	0.39 U 0.42 U
2-Chloronaphthalene	ug/L	0.42 U	0.42 U	0.42 U 0.85 U
2-Chlorophenol	ug/L	0.85 U	0.85 U	0.85 U 0.34 U
2-Methylnaphthalene	ug/L	0.34 U	0.34 ป	0.34 U 3.6 U
3,3-Dichlorobenzidine	ug/L	3.6 U	3.6 U	0.45 U
4,6-Dinitro-o-cresol	ug/L	0.45 U	0.45 U	0.45 U
4-Bromophenyl phenyl ether	ug/L	0.6 U	0.6 U	0.6 U 0.4 U
4-Chlorophenyl phenyl ether	ug/L	0.4 U	0.4 U	0.48 U
Acenaphthene	ug/L	0.48 U	0.48 U	0.48 U
Acenaphthylene	ug/L	0.38 U	0.38 U	0.38 U 0.41 U
Anthracene	ug/L	0.41 U	0.41 U	
Benzo(a)anthracene	ug/L	2.2	2.4	5.6
Benzo(a)pyrene	ug/L	3.8	4.4	
Benzo(b)fluoranthene	ug/L	- 5.2	4.9	6.9
Benzo(ghi)perylene	ug/L	3.5	4.2	5.3
Benzo(k)fluoranthene	· ug/L	1.3	1.9	2.2
Bis(2-chloro-1-methylethyl) ethe	r ug/L	0.68 U	0.68 ป	0.68 U
Bis(2-chloroethoxy)methane	ug/L	0.39 ป	0.39 ป	0.39 U
Bis(2-chloroethyl)ether	ug/L	0.28 U	0.28 U	0.28 U
Bis(2-ethylhexyl)phthalate (BEH	P) ug/L	1.9	5.4	5.8
Butyl benzyl phthalate	ug/L	0.54 U	0.54 U	0.54 U
Carbazole	ug/L	0.41 U	0.41 U	0.41 U
Carbolic acid	ug/L	0,45 U	0.45 U	0.45 U
Chrysene	ug/L	2.6	3	4.1
Dibenzo(a,h)anthracene	ug/L	0.47 U	0.47 U	1 1
Dibenzofuran	ug/L	0.42 U	0.42 U	0.42 U
Diethyl phthalate	ug/L	0.45 U	0.45 U	0.45 U
Dimethyl phthalate	ug/L	0.43 U	0.43 U	0.43 U
Di-n-butyl phthalate	ug/L	0.85 U	0.85 U	0.85 U

TABLE 2-1B
FORMER PRODUCTION WELL

GROUNDWATER ANALYTICAL RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS STANDARD CHLORINE CHEMICAL COMPANY

SITE: SAMPLE ID: DATE:		SC-PW PW-88 10/8/98	SC-PW PW-228 £10/8/98	SC-PW EPW-360 TOW98
DEPTH (ft): CONSTITUENT:	UNITS	88		
SEMI-VOLATILES (Contin	ued)		•	·
Di-n-octyl phthalate	ug/L	0.43 U	0.43 U	0.43 U
Fluoranthene	ug/L	2.8	. 3	. 3.7
Fluorene	ug/L	0.33 U	0.33 U	0.33 U
Hexachiorobenzene	ug/L	0.39 U	0.39 U	0.39 U
Hexachlorobutadiene	ug/L	0.54 U	0.54 U	0.54 U
Hexachlorocyclopentadiene	ug/L	1.5 U	1.5 U	1.5 U
Hexachioroethane	ug/L	0.5 U	0.5 U	0.5 U
Indeno(1,2,3-cd)pyrene	ug/L	2.8	3.4	4.3
Isophorone	ug/L	0.3 U	. 0.3 U	0.3 บ
m-Dichlorobenzene	ug/L	0.5 U	0.5 ป	0.5 ป
m-Nitroaniline	ug/L	1.4 U	1.4 U	1.4 U
Naphthalene	ug/L	0.38 U	0.38 U	0.38 U
Nitrobenzene	ug/L	0.36 U	0.36 U	0.36 U
N-Nitrosodiphenylamine	ug/L	0.42 ป	0.42 U	0.42 U
N-Nitrosodipropylamine	ug/L	0.39 ป	0.39 U	0.39 U
o-Cresol	ug/L	0.71 U	0.71 U	0.71 U
o-Dichlorobenzene	ug/L	0.61 U	0.61 ป	0.61 U
o-Nitroaniline	ug/L	0.43 U	0.43 ป	0.43 U
o-Nitrophenol	ug/L	0.58 U	0.58 U	0.58 U
p-Chloroaniline	ug/L	0.25 U	0.25 U	0.25 U
p-Chloro-m-cresol	ug/L	0.57 U	0.57 U	0.57 ป
p-Cresol	ug/L	0.24 U	0.24 U	0.24 U
p-Dichlorobenzene	.ug/L	0.59 ป	0.59 ป	0.59 U
Pentachlorophenol	ug/L	0.48 U	0.48 U	0.48 U
Phenanthrene	ug/L	1.3	1.3	1.6
p-Nitroaniline	ug/L	0.35 U	ั 0.35 ป	0.35 U
p-Nitrophenol	ug/L	4.9 U	4.9 U	4.9 U
Pyrene	ug/L	2.6	3	. 0.43 U

U indicates constituent not detected at listed detection limit.

TABLE 2-1C

FORMER PRODUCTION WELL GROUNDWATER ANALYTICAL RESULTS FOR METALS STANDARD CHLORINE CHEMICAL COMPANY

				Company Company of the Company
SITE: SAMPLE ID: DATE: DEPTH (ft):		99C-PW PW-88 10/8/98	SC-PW PW-228 10/8/98 228	SC-PW • PW-360 • 10/8/98 • 360
CONSTITUENT:	CARRENTS		A STATE OF THE STA	
Aluminum	ug/£	798	527	533
Antimony	ug/L	2.31 B	1.7 B	1.65 B
Arsenic	· ug/L	2.12 B	1.525 U	1.8 B
Barium	ug/L	35.3	67.7	213
Beryllium	ug/L	0.19 B	0.27 B	0.44 B
Cadmium	ug/L	0.215 B	0.125 B	0.125 B
Calcium	ug/L	28300	30500	105000
Chromium	ug/L	989	819	890
Cobalt	ug/L	3.17 B	2.3 B	2.04 B
Copper	· ug/L	15.9	33.7	30.6
Iron	ug/L	3590	2630	2070
Lead	ug/L	16.4	12.9	11.6
Magnesium	ug/L	10400	14800	77200
Manganese	ug/L	55.2	33	48.1
Mercury	ug/L	0.2 U	0.2 U	0.2 U
Nickel	ug/L	86.8	65.8	59.3
Potassium	ug/L	17000	14900	37700
Selenium	ug/L	2.63	2.02 B	3.98
Silver	ug/L	0.294 U	0.294 U	0.294 U
Sodium	ug/L	178000	232000	695000
Thallium	ug/L	2,66 B	2.36 B	2.75 B
Vanadium	ug/L	167	163	146
Zinc	ug/L	52.8	43.5	38.3

U indicates constituent not detected at listed detection limit.

B indicates reported value is < CRDL but > IDL

E.5 DNAPL Data

1996-1997 Focused Remedial Investigation

Table 2-2

DNAPL Characterization Sampling Results

Standard Chlorine Chemical Company

Kearny, New Jersey

Neil No. Date Sampled Fime Sampled ERM TRØ	M:V-8L 9/19/95 1200 7461 (mg/kg)	MW-12L 9/19/95 1320 7465 (mg/kg)	MW-13 ¹ , 9/19/95 1250 7464 (mg/kg)	MtV-14L 9/19/95 1235 7563 (mg/kg)	Practical Quantitation Limit (mg/kg)	EB-1 9/19/95 1225 7462 (mg/L)	TP-1 9/19/95 1400 7466 (mg/L)
	8,600	U	บ. '	U	2,500	υ	ប
richloroethylene	11,000	บ	υ	ับ	2,500	U	ប
etrachloroethylene	9,000	1,700 J	U .	U	2,500	. บ	U
chlorobenzene	74,000 J	40,000	3,600 J	41,000	5,000	ប	U
1,3-dichlorobenzene	160,000	99,000	12,000	45,000	5,000	ប	ប
1,2-dichlorobenzene	68,000 }	49,000	6,500	54,000 [5,000	บ	U
1,4-dichlorobenzene	41,000 J	200,000	150,000	75,000	2,500	ប	บ
naphthalene 1,2,4-trichlorobenzene	620,000	160,000	99,000	770,000	2,500	ช	U .
		577	37	NA	•	NA	NA
viscosity (SSU)	30	NA	1.3373	NA NA		NA '	NA
speciic gravity (unitless)	1.3789	, NA	1.33/3	144	•	,	

· NA: Not analyzed

EB: Equipment blank

____TB: Travel Blank __

J: Indicates an estimated value

U: Indicates compounds was analyzed for but not detected

Table 3-2
Summary of FRI DNAPL Measurements
Standard Chlorine Chemical Company
Kearny, New Jersey Facility

Well No.	Date	DNAPL Thickness (ft)**	Approx. Depth Well is Set into Confining Clay (ft)
MW-4L	7/15/96	0.25	•
PZ-4D	7/15/96	1.20	•
MW-8L	7/15/96	2.26	2.4
MW-12L	7/15/96	1.34	2.1
MW-13L	7/15/96	1.91	1.5
MW-14L	7/15/96	0.90	1.5

E.6 Surface Water/Sediment Data

1990-1993 Remedial Investigation

TABLE 5-7 SUMMARY OF SURFACE WATER ANALYTICAL DATA SHIFTA HOVIMIZ GIVA SHIFTA KOV SCCC, KEARNY, NJ

LAB NUMBER SAMPLE NUMBER	IIA- SSW		IIA- SSW		IIA- SSW		IIA- SSV	3587	HA-: W22		SSW-S	3558	CR27 SSW	* .	IIA-3 Field B		IIA-	
	CONC.	D.1.	CONC.	D.L.	CONC.	D.I.,	CONC.	D.L.	CONC	D.I.	CONC.	D.I.	CONC.	D.I.	CONC.	D.L.	Trip 8	
VOC Compound (ug/L)	-						h ario 111 - 111			,,,,,,	1 223101		CONC.	10.15	CLATC	12.1	LUNG	D.L.
Benzene	NI)	22.0	9.7	4.4	ND	22.0	39.8	22.0	7.9	4.1	6.1	4.4	ND	10	ND	4.4	ND	4.4
Chlorobenzene	414.0	30.0	\$6.0	6.0	332.0	30.0	329.0	30.0	128.0	6.0	107.0	6.0	CIN	10		6.0	ND	6.0
Ethylbenzene	ND	36.0	KIMIT.	7.2	ND	36.0	ND	36.0	BMIN.	7.2	מא	7.2	CIN	10		7.2	ND	7.2
Metaylene chloride	NID	14.0	BMDI.	2.8	NI	14.0	ND	14.0	NI)	2.8	CIN	2.8	3 1	10		2.8	- ND	
1,2-Tram-dichbroethene	(IN	8.0	CIN	1.6	(IN	8.N	21.0	8.0	1.7	1.6	1.7	1.6	ND 2	<u>iö</u>		1.6	ND ND	1.6
Tolerse	(IN	30.0	6.2	6.0	BMDY.	30.0	ND	30.0	BMIN.	6.0	ND	6.0	ND -	10	KIMB.	6.0	KIMB.	6.0
Trichloroethene	(IN	9.5	ND	1.9	ND	9.5	ND	9.5	ND	1.9	ND	1.9	ND	10		1.9	NI)	1.9
Xylones	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	ND	10		NA.	NA .	NA.
BNA Compound (ug/L)																110	NV.	1
Accaphthese	ND	2.0	12.3	2.0	ND	2.1	ND	2.0	ND	2.2	ND	2.1	93	57	ND	2.0	NA	NA NA
Acenaphtykae	NID	3.6	BMDI.	3.7	ND	3.8	ND	3.7	- NID	4.0	NI)	3.8	ND CIN		****	3.7	NA NA	NA NA
Dihenzefuran	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA I	NA NA	52 J	57		NA.	NA-	NA NA
1,2-Dicklorobenzene	171.0	2.6	224.0	2.0	542.0	2.1	2740.0	2.0	321.0	2.2	320.0	2.1	170	57		2.0		
1,3-Dichlorobenzene	296.0	2.0	85.5	2.0	432.0	2.1	2920.0	2.0	278.0	2.2	288.0	2.1	82		ND-	2.0	NA NA	-NA NA
1.+Dichlorohenzene	369.0	4.6	192.0	4.6	517.0	4.8	4680.0	4.7	385.0	5.0	394.0	1.8	240	57	-NI)	4.7	-NA	NA NA
Fluorene	- NID	2.0	2.8	2.0	ND	2.1	ND	2.0	CIN	2.2	NI	2.1	26 1			2.0	- <u>NA</u> -	NA NA
Isophorone ·	ND	2.3	ND	2.3	ND	2.4	ND	2.3	5.2	2.5	5.5	2.1	ND	57		2.3	-	NA NA
2 Methylnaphthalone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	41 1	57		NA NA	NA.	NA NA
2-Methylphenol	NA	NA	NA	NA	NA	NA	NA	NΛ	NA.	NA	NA.	NA -	340	57		NA.	NA-	NA.
Naphthalene	9.1	1.7	260.0	1.7	16.4	1.8	4.0	1.7	7.1	1.8	6.8	1.7	81	57		1.7	NA-	NA.
Phenauthrene	ND	5.6	BMD1.	5.7	ND	5.9	ND	5.7	CIN	6.1	NI)	5.9	9 1	57		5.7	NA.	NA NA
1,2,4-Trichkrobenzene	NI)	2.0	78.5	2.0	49.3	2.1	51.0	2.0	30.2	2.2	30.4	2.1	34 1	57		2.0		NA NA
2-Chlorophenol	3.9	3.4	(IN	3.5	3.8	3.6	ND	3.5	DMIN.	3.8	RMIN.	3.6	NI)	57		3.5	<u> </u>	- NA
2,4-Dicklorophenol	HIMIH.	2.8	CIN	2.8	CIN	3.0	19.8	2.9	ND	3.1	7.1	2.9	-ND	57	ND	2.4	-NA	NA
2,4-Disnethylphenol	17.6	2.8	60.4	2.8	ND	3.0	ND	2.9	ND	3.1	ND.	2.9	1000	230		2.9	NA	NA NA
Phenol	29.0	1.6	241.0	1.6	ND	1.6	ND	1.6	NID	1.7	NI)	1.6	8		ND	1.6	-NA	NA NA
Pacuolics	0.07	0.05	0.43	0.05	ND	0.05	0.05	0.05	NID	0.05	- KID	0.05	NA -	NA.	NA.	NA NA	- NA	NA.

CONC. - Concentration of compound

D.L. - Detection Limit ND - Not detected

- Not analyzed

Estimated concentration of compound detected below the detection limit

BMDL — Present below method detection limit, estimated concentration not reported by laboratory

TABLE 5-7 (Continued) SUMMARY OF SURFACES WATER ANALYTICAL DATA MISTALS SCCC, KEARNY, NJ

LAB NUMBER SAMPLE NUMBER	IIA-		IIA-3 SSW		IIA-3 SSW		HA-! SSW		IIA-3 SSW		IIA-: SSW-5		CR271 SSW-	•
Share 125 (Children	CONC.	D.L.	CONC.	D.L.	CONC.	D.L.	CONC.	D.L	CONC.	D.I.	CONC.	D.L.	CONC.	D.L.
Metals (mg/L)														
Astimony	BMDI.	0,060	ND	0.060	ND	0.060	BMTM.	0.060	_ ND_	9.060	ND_	0.060	ND.	24
Arsonic	ND	0.010	ND	0.010	CIN	0.010	0.010	0.010	ND	0.010	_ ND_	0.010	BMDI.	
lleryllium	ND (IK	0.001	ND	0.001	ND	0.001	0.002	0.001	ND	0.001	NI)	0.001	ND	0.2
('admium	BMDI.	0.002	BMD:	0.002	9.002	0.002	0.017	0.002	0.003	0.002	0.003	0.002	ND	3
Chromism	6.290	0.010	0.320	0.010	9.420	0.010	8.640	0.010	0.160	0.010	0.540	0.010	1240	10
Copper	0.023	0.010	BMDI.	0.010	BMD1.	0.010	0.200	0.010	BMDI.	0.010	0.020	0.010	173	
Lead	- ND	0.075	ND	0.075	NI)	0.075	1.000	0.075	KIMII.	0.075	0.260	0.075	136	1
Mercury	BMDI.	0.000	BMDI.	0.000	CIN	8.000	CIN	0.000	ND	0.000	0.000	0,000	19.4	0.2
Nickel	CIN	0.020	BMD.	0.020	BMIN.	0.020	0.350	0.020	0.037	0.020	0.046	0.020	982	20
Schraium	- ND	0.005	ND	0.005	ND	0.005	0.005	0.005	IMINI.	0.005	BMD.	0.005	NI)	7
Silver	0.013	0.010	JKIMB.	0.010	BMIN.	0.010	HMIN.	0.010	BMDI.	0,010	IIMI)I.	0.010	CIN_	7
Thallium	ND ND	0.010		0.010		0.010	CIN	0.010	NID	0.010	(IN	0.010	(IN	
7.isc	0.360	0.020		0.020		0.020	1.600	0.020	D.580	0.020	0.350	0.020	487	20
C'yanide	ND ND	0.025		0.025		0.025	ND	0.025	NID	0.025	NI)	0.025	ND	

CONC. - Concentration of compound
D.L. - Detection Limit

ND - Not detected

BMDL - Present below method detection limit, estimated concentration not reported by inhoratory

TABLES-8 SUMMARY OF SEDIMENT ANALYTICAL DATA ZELITA JOVIMBE CHA ZELITA IOV SCCC, KEARNY, NJ

LAB NUMBER	IIA3		IIA3 SS		IIA3 S-		IIA3 SSW		IIA3: W22		EAH WZZ	- 1	IA3S W22		CB-2 SSW	
SAMPLE NUMBER	CONC.	1 D.L.	CONC.	D.L.	CONC	D.I.	CONC.	D.I.	CONC.	D.L.	CONC.	D.L	CONC.	D.I.	CONC.	D.L_
VOC Compound (ug/kg)									y							
Benzene	ND	16	14.9	13	58.4	<u>58</u>	BMDI.	16	ND.	8100	ND	18000	ND_	1500	5,1	. 6
Chlombenzene	ND	21	1484	18	1950		38.5	2!	42100	11000	140000	24000	9640	2000	870	6
Methylene chloride	ND	10	13.6	8.2	61.1	37	ND	10	BMDE	5200	1 5000	11000	1360	930	23 Ju	6
Toluene	NID	21	ND	18	BMDI.	79	_ND_	21	Ni5	11000	NI)	24000	ND.	2000	!!! !	6
Ethylbenzene	CIM	26	ND	21	ND	95	ND	26	ND.	13000	ND	29000	ND.	2400	45 J	6
Xvienes	NΛ	NA	NA	NΛ	NA_	NA	NA	NA.	NA	NA.	NA	NA.	NA	NA _	49 J	6
BNA Compound (ug/kg)									l							
Acenaphthene	ND	680	ND	5600	ND	2500	BMDI.	680	7860	7000	BMIX.	7600	BMDI.	13000	\$ 2300	43
Anthracene	ND	680	ND	5600	NID	2500	ND	680	BMD1.	7000	ND	7600	, ND	13000	500	43
Benzo(a)anthracene	ND	2800	ND	23000	ND	10000	BMDL	2800	BMDL.	29000	BMIN.	31000	ND	52000	1100	43
Benzo(a)pyrene	ND	890	ND	7300	ND	3300	ND	890	37700	9200	27900	10000	ND	17000	1200	43
Henzo(b) fluoranthene	ND	1700	ND T	14000	NI)	6300	ND	1700	37700	18000	44600	19000	ND	32000	2400	41
llenzo(g,h,i)perylene	ND	1500	NI)	12000	ND	5300	CIN	1500	36200	15000	23900	16000	ND	27000	1200	4.
Bis(2-ethylhexyl)phthalate	17800	3600	BMDL	29000	NID	13000	ND	3600	ND	37000	65500	40000	188000	67000	(IN	4
Carabzole	NA	NA	NA	NΛ	NA.	NA	NA	NA	NA.	NA	NA.	NA	NA	NA.	220 J	4.
Chrysene	ND	890	ND	7300	NID	3300	1100	890	28000	9200	33600	10000	ND	17000	1200	4
Dibenzoluran	NΛ	NA NA	NA NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA.	1000	4.
Di-n-Butylobthalate	ND -	8600	ND	29000	ND	13000	ND	3600	ND.	37000	NI)	40000	ND	67000	170 1	4
1.2-Dichlorobenzene	I BMDL	680	ND ND	5600	125000	2500	ND	680	723000	7000	1070000	7600	13300	13000	1 1100	4
1.3-Dichlorobenzene	470	680	ND ND	5600	109000	2500	ND	680	593000	7(KK)	1010000	7600	35200	13000	800	4:
1.4-Dichlombenzene	2090	1600	ND	13000	202000	5700	ND	1600	637000	160(X)	1170000	18000	48500	29000	1900	43
Fluorathene	KIMBI	780	- ND	6400	BMIN.	2900	3950	780	31500	8100	487000	8R00	ismin.	15000	2100	4
Нижеле	ND	680	- KID	5600	ND	2500	ND	680	BMDL.	7000	ND.	7600	ND	13000	1000	. 4
Indeno(1,2,3-cd)pyrene	ND	1300	ND	11000	ND	4800	ND	1300	48300	14000	27800	1,5000	ND	25000	1500	4
2-Methylphenol	NA	NA	NA.	NA.	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NID_	4
2-Methylnaphthalene	NA.	NA-	NA.	NA	NA.	NA.	NA.	NA	ÑÁ	NΛ	NA_	NA.	NA.	NA_	1600	4
Naphthalene	ND	570	ND	4700	ND	2100	879	570	234000	5900	8800	6400	ND	11000	5 3400	4
Phenanthrene	BMIN.	1900	ND	16000	BMIN.	7000	4880	1900		20000	47400	22000	ND	36000	1800	4
Pyrene	BMIN.	680		5600	BMD.	2500	3350	684	28500	7000	41800	7600	ND	13000	1700	
1.2.4-Trichlorobenzene	776	680	I	5600	60200	2500	ND	680	190000	70110	257000	7600	ND	1,30000	590	4
2,4-Dimethylphenol	ND	960		7900	ND	3500	ND	960		TOCKK	CIN	11000	Ni	18000	ND.	1 4
Phenol	- ND	530		4400	ND	2000	ND-	530		5000	ND	6600	ND	1000	ND	1
Phenolics	ND	0.57		0.47	- ND	0.21	ND	0.57		0.59	1 2 2	0.64	Ni	1.10	NA.	N/

CONC. - Concentration of compound D.L. - Detection Limit

-Not analyzed - Not detected NΛ

ND

- Estimated concentration of compound detected below the detection limit

-Compound also found in laboratory blank

BMDL - Present below method detection limit, estimated concentration not repeated by laboratory.

TABLE 5-8 (Continued) SUMMARY OF SEDIMENT ANALYTICAL DATA MITALS SCCC, KEARNY, NI

LAB NUMBER	IIA39 S-I	79	IIA3 SSV		IIA3 S		HA3 SSW		IIA3 SSW		IIA3 VZS		JIA39 SSW	_	CB-2 SSW	
SAMPLE NUMBER .	CONC.	D.L.	CONC.	D.L_	CONC.	D.L.	CONC.	D.L.	CONC.	D.1.	CONC.	D.L_	CONC.	D.I	CONC.	D.I
Metals (ug/kg)											,		 ,			
Antimony	26,00	21.00	100.00	17.00	KIMB.	7.90	40.00	21.00	130.0	22.00	91.00	24.00	120.0	41.00	20.7	24
Arsenic	5.20	3.60	11.00	2.90	8.40	1.30	_BMDI,	3.60	14.0	3.70	20.00	4.00	21.0	6.90	29.6	4
Beryllium	BMDL.	0.36	0.78	0.29	0.25	0.13	0.51	0.36	2.4	0.37	ND	0.40	1.5	0.69	ND	0.4
Cadmium	2.10	0.71	4.80	0.58	1.80	0.26	4.50	0.71	8.1	0,75	BMDI	0.81	12.0	1.40	6.82	0.8
Chromium	3440.00	3.60	12700.00	2.90	100.00	1.30	5560.00	3.60	16400.0	3.70	930.00	4.00	12600.0	6.90	1090	4
Copper	40.00	3.60	73.00	2.90	66.00	1.30	25.00	3.60	170.0	3.70	220.00	4.00	250.0	6.90	401	4
Lead	51.00	27.00	140.00	22.00	390.00	9.90	70.00	27.00		28.00	15500.00	30.00	5300.0	52.00	156	30
Mercury	0.83	0.29	1.30	0.23	0.19	0.11	1.20	0.29	1.2	0.30	0.98	0.32	3.6	0.55	24.5	0.32
Nickel	14.00	7.10	99.00	5.80	24.00	2.60	65.00	7.10	190.0	7.50	49.00	8.10	110.0	14.60	718	8.1
Selenium	BMDL	1.80	NID	1.50	BMIDE.	0.66	ND	1.80	NB	5,90	BMDI.	2.00	BMIX.	3.40	ND	2
Silver	BMDL	3.60	4.20	2.90	ND	1.30	5.10	3.60	6.0	3.70	ND	4.00	BMD.	6.90	KIME	44
Thallium	CIM	3.60	ND	2,90	NID	1.30	NID	3.60	ND	3.70	NID	4,00	ND	4,90	NI	1 4
Zinc	98.00	7.10	290.00	5.80	738.00	2.60	170.00	7.10	640.0	7.50		8.10	1850.0	14.00		B.
Cyanide	ND	1.80	ND	1.50		0.66	3.86	1.80	5.48	1.80	ND	2.00	10.33	3.30	1.5	11

CONC. — Concentration of compound D.L. — Detection Limit

- Not detected

BMDL - Present below method detection limit, estimated concentration not reported by laboratory

1996-1997 Focused Remedial Investigation

Table 3-4
Summary of FRI Sediment Sample Results
Standard Chlorine Chemical Company
Kearny, New Jersey Facility

Sample ID		SED-B1	SED-B2	SED-B3	SED-A1	SED-A4	SED-A2	SED-A3	SED-C1
•	Sediment		1		ļ				
Lab ID#	Screening Guidelines*†	BR1933	BR1934	BR1935	BR1936	BR1937	BR1938	BRI939	BR1940
Sample Date		08/28/96	8/29/96	8/29/96	8/29/96	08/28/96	08/28/96	08/28/96	08/28/96
Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Units	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μ g/kg
Parameter									
VOC's (μg/kg)						ļ			
1,2,3-Trichlorobenzene	-			į	1	•	11.1 BMDL	18.7	
1,2,4-Trichlorobenzene	- 1	1					40.5	61.1	
1,2,4-Trimethylbenzene	-	I					4.51 BMDL	40.4	
1,2-Dichlorobenzene	35*	4.78 BMDL	1.95 BMDL		4.19 BMDL	7.67 BMDL	160	164	
1,3-Dichlorobenzene	-	4.45 BMDL	1.62 BMDL		18.7	31.5	145	69.6	9.11
1,4-Dichlorobenzene	110*	10.80 BMDL	3.73 BMDL	2.03 BMDL	45.4	79.1	212	160	6.17 BMDL
Benzene .	-							4.68 BMDL	
Butylbenzene	-						6.52 BMDL		
Chlorobenzene				:			33.6	11.2 BMDL	
Cumene	- 1						5.52 BMDL	17.3	
Ethylbenzene	10*							15.7	
Methylene chloride	- 1				6.83 BMDL		9.3 BMDL	9.9 BMDL	8.71
Toluene	- 1							7.64 BMDL	
m+p-Xylenes	40*							7.79 BMDL	
p-Cymene	-						7.91 BMDL	42.8	
SVOC's (µg/kg)									
sec-Butylbenzene	-						1.84 BMDL		
Naphthalene	340/2100+	3.57 BMDL	6.88 BMDL	0.744 BMDL	2.58 BMDL	4.62 BMDL	33.5	367	

ND = Not detected.

BMDL = Concentration detected below method detection limit

Shaded values are above the sediment standard listed.

^{* -} Standard obtained from the Region III BTAG Screening Levels chart (8-9-95)

^{† -} Standard obtained from the National Oceanic and Atmospheric Administration Technical Memorandum NOS OMA 52 (ER-L/ER-M Concentration)

Table 3-5
Summary of Sediment Sample Results Collected for Maxus Property Investigation
Standard Chlorine Chemical Company
Kearny, New Jersey Facility

Sample ID		SED-126A	SED-126B	SED-126C
-	Sediment			
Lab ID#	Screening Guidelines*t			
Sample Date		9/23/92	9/23/92	9/23/92
Matrix	Sediment	Sediment	Sediment	Sediment
Units	μg/kg	μg/kg	μg/kg	μg/kg
Parameter				
VOC's				
1,3-Dichlorobenzene	-	650		290,000
1,4-Dichlorobenzene	110*	1,000	Ì	360,000
1,2-Dichlorobenzene	35*			280,000
1,2,4-Trichlorobenzene	-	270		1,200,000
SVOC's				
Naphthalene	340/2100†	480	7,600	170,000
2-Methyl-napthalene			5,400	
Acenaphthylene	44*		2,000]
Acenaphthene	16*		7,100]
Phenanthrene	225/1380t	620	43,000	1
Anthracene	85/960t		21,000] .
Fluoranthene		2,500	35,000]
Pyrene	350/2200†	2,200	46,000	1
Benzo(a)-anthracene	230/1600+	1,500	26,000]
bis(2-Ethylhexyl)-phthalate	-	10,000	15,000	
Chrysene	-	1,300		
Benzo(b)-fluoranthene	-	1,800	19,000	
Benzo(k)-fluoranthene		810		
Benzo(a)-pyrene	400/2500†	1,400	17,000	
Indeno(1,2,3-od)-pyrene	-	540	56,000	1
Benzo(g,h,i)-perylene	-	480	4,900	
1,1,1-Trichloroethane	-			3,900
Benzene	-	1	410	
Chlorobenzene	-		120,000	
Pesticides/PCBs				
4,4-DDE	2.2	22	J	1
4,4'-DDD	16	14	1	
gamma-Chlordane	-	5		
Aroclor-1254	l	210	.l	1

ND = Not detected.

BMDL = Concentration detected below method detection limit.

Values that are in bold italics and shaded are above the listed guideline.

- *-Standard obtained from the Region III BTAG Screening Levels chart (8-9-95)
- † Standard obtained from the National Oceanic and Atmospheric Administration

Technical Memorandum NOS OMA 52 (ER-L/ER-M Concentration).

Table 3-6
Summary of FRI Surface Water Sample Results
Standard Chlorine Chemical Company
Kearny, New Jersey Facility

Sample ID	NJDEP Surface Water	EB-1	SW-3	SW-2	TB-1	SW-1	SW-4
	Quality Standards						
Lab ID#	"SE" Classification	BRI941	BRI942	BRI943	BRI945	BR1947	BR1948
Sample Date		08/28/96	08/28/96	08/28/96	08/28/96	08/28/96	08/28/96
Matrix	Surface Water	Water	Water	Water	Water	Water	Water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Parameter							
VOC's							
1,2,4-Trichlorobenzene	123						1.63 BMDL
1,2-Dichlorobenzene	16,500		6.13	1.43 BMDL		1.57 BMDL	3.14 BMDL
1,3-Dichlorobenzene	22,000		4.56 BMDL				•
1,4-Dichlorobenzene	3,139		6.37	1.21 BMDL		1.47 BMDL	1.8 BMDL
Chlorobenzene	21,000		2.52 BMDL				
SVOC's							
Naphthalene	NA		·				3.15 BMDL

BMDL = Concentration detected below method detection limit.

NA = No standard available.

2000 Remedial Action Workplan

2000 Remedial Action Workplan Sediment/Surface Water

It tigs - less below ground surface

NLE _ No Level Established

MOL - Method Detection Limit

port - parts per maion

Q - Qualifier

D · Diluted

Enviro-Sciences, Inc.			·	,	J - Concentration di	stacted below MOL
Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	VON-RESIDENTIAL Direct Contact Soil Cleanup Criteria	Impact to Groundwater Soil Cleanup Criteria	TPS-A1-1 310-001 1.0 01/17/00	TPS-A1-5 361-001 5.0 01/19/00	TPS-A1-10 381-002 10.0 01/19/00 MDL CONC
•	an inches the first transfer of the second	(227)	(ppm)	MDL CONC Q	MDL CONC Q	MDL CONC (ppm)
COMPOUNDS (units)	(ppm)	(ppm)	(ppin)	1 Ippiny	(pp)	3,000
Dilution Factor		 		1-1		
Benzane	3 -	13	1 '	ND	ND	0.741
Frichloroethene	. 23	54	i	ND	ND	2.75
Tetrachloroethene	4	6	i	NO I	ND	1.98
1,3-Dichlorobenzene	5100	10000	×100	NO NO	ND	29.7
1.4-Dichlorobenzene	280	1200	1200	ND .	ND	26.4
1.2-Dichlorobenzene	5100	10000	50	ND.	ND	13.4
Chlorobenzene	37	680	1	ND	ND	5.17
TOTAL TARGETED VOS:		-	***	ND	ND 3.59	80.14 5.32
TOTAL NON-TARGETED VOs:				98	1 3.59	3.32
COMPOUNDS (units)	(ppm)	(ppm)	(mag)	(ppm)	(ppm)	(ppm)
Dilution Factor			***			
BN+15			44-		ND	ND
Acenaphthene	3400	10000	100	ND ND	סא	ND ND
Acenaphthylene	NLE	NLE	NLE	ND	ND	ND
Anthracene	10000	10000	100 500	0.77 J	ND	ND
Benzo(a)anthracene	0.90	0.66	100	ND ND	ND	ND
Benzo(a)pyrene	0.66		50	ND	ND ND	ND
Benzo(b)fluoranthene	0.90 NLE	4.00 NLE	NLE	ND	ND	ND
Benzo(g,h,i)perylene	0.90	4.00	100	ND	ND	ND ND
Benzo(k)fluoranthene	49	210	100	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NLE	NLE	NLE .	ND	ND .	ND
Benzedrine Chrysene	9	40	500	ND ND	ND	ND
Dibenzofuran	NLE	NLE	NLE	ND	ND	ND
Dibenzo(a,h)anthracene	0.86	0.66	100	ND	ND	ND
Fluoranthene	2300	10000	100	1.01 J	ND	ND
Fluorene	2300	10000	100	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.90	4	500	ND	ND ND	ND ND
2-Methylnaphthalene	NLE	NLE	NLE	ND	ND ND	ND
Naphthalene	230	4200	100	200	0.323 J	ND
Phenanthrene	NLE	NLE	NLE	ND	ND	ND ND
Pyrene	1700	10000	100	1.01 J	ND	ND 0.183
1.2.4-Trichlorobenzene	69	1200	100	ND	1.1	0.729
1,3-Dichlorobenzene	5100	10000	100	ND ND	ND ND	0.729
1,4-Dichlorobenze	570	10000	100	ND ND	ND ND	0.137
1,2-Dichlrobenzene	5100	10000	50	202.79	1.423	1.79
TOTAL TARGETED BNs:	-		-	ND ND	NO NO	316.22
TOTAL NON-TARGETED BNs:	-			ND	ND	ND
				(12.2)	(ener)	(ppm)
COMPOUNDS (units)	(ppm) 	(ppm)	(ppm)	(ppm)	(ppm)	1001117
Dilution Factor Priority Pollutant Metals						1
	20	20	. NLE	19.5	0.443	1.97
Arsenic Beryilium	1	1 7	NLE	0.3	ND	ND
Cadmium **	1 1	1	NLE	0.9	ND	ND
Chromium	120000	NLE	NLE	3,207	9.5	24.7
Chromium, (hexvalent)	NLE	NLE	NLE	ND	ND	ND g 4g
Copper	600	600	NLE	45.4	29.9	6.48 ND
Lead	400	600	NLE	131	2.84	ND ND
Mercury	14	270	NLE	0.4	ND 2.66	5.34
Nickel	250	2400	NLE	208	ND ND	ND ND
Silver	110	4100	NLE NLE	ND ND	ND ND	0.091
Thallium	1500	2 1500	NLE NLE	286	15.8	10
Zinc	1 1500	1000	1 9 to har			
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) 61,000	(ppm) 1,800

TABLE 1

SUMMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED JANUARY 17, 2000 - JANUARY 19, 2000 STANDARD CHLORINE KEARNY, NEW JERSEY t bgs - feet below ground surfa

NLE _ No Level Established

MOL - Method Detection Limit poin - corts per million

n. Omise

D - Dituted

Enviro-Sciences, Inc.	$\epsilon = \lambda$		•	-		NO - Not Detected J - Concentration detected below
Sample ID Number Laboratory Sample Number: Depth Collected (it bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Contact Soil Cleanup Criteria	impact to Groundwater Soil Cleanup Criteria	TPS-A2-1 310-002 1.0 01/17/00	TPS-A2-5 310-003 5.0 01/17/00 MDL CONC Q	TPS-A2-10 364-003 10.0 01/19/00 MDL CONC Q
SAL PAULOS	(22-22)	(227)	(ppm)	MOL CONC Q	MDL CONC Q	(ppm)
OMPOUNDS (units)	(ppm)	(ppm)	(ppin)	(55110)	75511.1	уррии
/O+10						
Benzene	3 .	13	1	I ND	ND	4.58 J
richioroethene	23	54	1	ND	ND	85.7
etrachloroethene	4	6	1	ND	ND	123
,3-Dichlorobenzene	5100	10000	100	ND ND	ND	103 759 D
,4-Dichlorobenzene	280	1200	100	ND	ND ND	759 D
,2-Dichlorobenzene	5100	10000 680	50 1	ND ND	ND ND	1,460
Chlorobenzene	37	The state of the s		NO	ND	3.301
OTAL TARGETED VOS: FOTAL NON-TARGETED VOS:		=		13	ND	105.94
					(nnm)	(ppm)
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(Ppiny
Dilution Factor 3N+15		-	***	1-1		
Acenaphthene	3400	10000	100	ND	I ND	ND
Acenaphthylene	NLE	NLE	NLE	ND	ND	ND
Anthracene	10000	10000	100	0.16 J	ND	ND
Benzo(a)anthracene	0.90	4	500	0.68	ND	ND
Benzo(a)pyrena	0.66	0.66	100	0.54	ND	ND
Benzo(b)fluoranthene	0.90	4.00	, 50	0.72	ND	ND
Benzo(g,h,l)perylene	NLE	NLE	NLE	0.40	ND	ND ND
Benzo(k)fluoranthene	0.90	4.00	100	0.28	ND	ND ND
3is(2-ethylhexyl)phthalate	49	210	100	ND ND	ND ND	ND
3enzedrina	. NLE	NLE 40	NLE 500	ND 0.53	I ND	ND **
Chrysene	9	NLE	NLE .	ND ND	ND	ND
Dibenzofuran	NLE 0.66	0.66	100	ND	. NO	ND
Dibenzo(a,h)anthracene	2300	10000	100	1.14	ND	ND
Fluoranthene	2300	10000	100	ND	ND	ND
Fluorene Indeno(1,2,3-cd)pyrene	0.90	4	500	0.36	ND ND	ND
2-Methylnaphthalene	NLE	NLE	NLE	ND	ND	0.58 J
Naphthalene	230	4200	100	0.48	ND	. 40.90
Phenanthrene	NLE	NLE	NLE	0.44	ND ·	ND
Pyrene	1700	- 10000	100	0.97	ND	ND
1,2,4-Trichlorobenzene	69	1200	100	ND	ND ND	43.20 n ga
1,3-Dichlorobenzene	***5 100	10000	100	ND	NO	1 7.55
1,4-Dichlorobenze	570	10000	100	ND	ND ND	1.10 3.72
1,2-Dichlrobenzene	5100	10000	50	ND ND	I ND	90.48
TOTAL TARGETED BNs:	•		-	6.67 ND	93.3	286.60
TOTAL NON-TARGETED BNs: Dioxin		**		ND	ND	ND
	en en gergen av til kommune på et sen mellet her sen en en en en en en en en en en en en en e				7,,,,,,	(ppm)
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	70000
Dikution Factor			2.2.5000000		 	
Priority Pollutant Metals	20	20	NLE	8.8	78.4	1.9
Arsenic Soullium	1 1	1	NLE	ND	ND	ND
Beryllium Cadmium		i	NLE	0.5	1.7	ND
Cagmium Chromium	120000	NLE	NLE	3,197	930	38.7
Chromium, (hexvalent)	NLE	NLE	NLE	ND	73.1	3.81
Copper	600	600	NLE	17.4	199	10.7
Lead	400	600	NLE	81.4	236	3.9
Mercury	14	270	NLE	0.2	1.3	ND 8.8
Nickel	250 .	2400	NLE	173	107	ND
Silver	110	4100	NLE	ND	ND ND	0.2
Thailium	2	2	NLE	NO 193	411	21.1
Zinc	1500	1500	1465	T 193		
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm) 25,000	(ppm) 49,000	(ppm) 4,300
JOHN JUNES (MINIS)						

TABLE 1

MMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED JANUARY 17, 2000 - JANUARY 19, 2000 STANDARD CHLORINE KEARNY, NEW JERSEY

R bgs - feet below ground surface NLE ... No Level Established MOL - Meshod Detection Limit

ND - Not Detected

	•		
Inc			 J - Concentration datacted below MOL

nviro-Sciences, Inc.						The same	enanta Pari Frederica		J · Con	centration dat	acted
المتكف القرار المتكافل أحسادا المجال والمجاورين		LON DECIDENTAL	Impert to	TPS-A3-1		-	TPS-A3-5		1	PS-A3-10	ם
ample ID Number	RESIDENTIAL	NON-RESIDENTIAL	Impact to				310-005		. '	364-005	•
boratory Sample Number:	Direct Contact	Direct Contact	Groundwater	310-004			5.0	1		10.0	
pth Collected (ft bgs)	Soil Cleanup	Soil Cleanup	Soil Cleanup	1.0			01/17/00			01/19/00	
ate Sampled:	Criteria	Criteria	Criteria	01/17/00 MDL CONC		MDL		0	MDL	CONC	a
		/nom)	(ppm)	(ppm)	~	1102	· (ppm)		de:	(ppm)	
OMPOUNDS (units)	(ppm)	(ppm) 	(ppin)	1 Sppini			100:17			V C. June	
lution Factor		 		-							
0+10	3	13	1	l ND	- 1		. ND		Ì	ND.	
enzene	23	54	i	ND	- 1	- 1	ND		1	0.32	J
ichloroethene	23 4	6	i	ND		ļ	ND			ND	
etrachloroethene	5100	10000	100	ND			ND			0.84	
3-Dichlorobenzene	280	1200	100	l ND	- 1		ND			0.86	
4-Dichlorobenzene 2-Dichlorobenzene	5100	10000	50	I ND	- 1		ND	:		2,23	
plotopeuseue S-Dictiotopeuseue	37	680	· 1	6.26	J		ND			ND	
OTAL TARGETED VOS:	***		***	6.26			ND	The state of the state of the		4.26	
OTAL NON-TARGETED VOS:	•••		••••	1.5			ND			36.59	
JIACHON TRIIGETED TOS.		A CONTRACTOR OF THE STATE OF TH	**************************************								
OMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)			(ppm)			(ppm)	
lution Factor		1 - 1									
N+15		1		1				_		780	
cenaphthene	3400	10000	100	0.25	J		ND			ON.	
canaphthylene	NLE	NLE	NLE	2.22			0.33	J		ND	
othracene	10000	10000	100	4.85	1		0.30			ND	
ntnracene enzo(a)anthracene	0.90	1 1	500	15	- [1.06			ND	
	0.66	0.66	100	13.20	- 1		1.10			ND	
zo(a)pyrenė	0.90	4.00	50	16.30	. 1		1.07			ND	
rzo(b)fluoranthene	NLE	NLE	NLE	4.50			0.67			· ND	
nzo(g,h,i)perylene inzo(k)fiuoranthene	0.90	4.00	100	8.85			0.33	J	1	ND	
	49	210	100	5.01			ND			ND	
s(2-ethylhexyl)phthalate	NLE	NLE	NLE	ND			ND			ND	
enzedrine	9	40	500	11.20		- 1	0.56		l :	ND	
rysene	NLE	NLE	NLE	ND			ND		1	ND	
benzofuran	0.66	0.66	100	1.77			ND		1	ND '	
benzo(a,h)anthracene		10000	100	41.20			1.29			ND	
uoranthene	2300	10000	100	0.61			ND		1	- ND	
uorene	2300	10000	500	4.91			0.55		1	ND	
deno(1,2,3-cd)pyrene	0.90	•	NLE	ND			ND		1	ND	
Methylnaphthalene	NLE	NLE	100	0.64		l	0.34	J		0.29	
aphthalene	230	4200		4.32		l	0.85	٠		ND	
henanthrene	NLE	NLE	NLE	26.90			1.81			ND	
yrene	1700	10000	100			1	NO		١.	2.97	
2,4-Trichlorobenzene	69	1200	100	ND			ND			0.24	
3-Dichlorobenzene	5100	10000	100	0.38			ND		1	0.29	
4-Dichlorobenze	570	10000	100	0.42			מא		1	0.25	
2-Dichlmbenzene	5100	10000	50	0.64			10.25	; is the resp	+	4.33	سعبوس
OTAL TARGETED BNs:	•		+-	160.97 60.63			37.85		1	0.58	
OTAL NON-TARGETED BNs:		**	+-	ND			ND	كعبيبن	+	DI	g Market S
ioxin	_		-	1 140	-		110				A 71, "
			/2021	(ppm)	uses from a		(ppm)	-رتدتند		(ppm)	
OMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(pp:11)		├	(ppiny		1	T. P. T. T.	
ilution Factor				 		-	T		 	T	_
riority Pollutant Metals		1		31.4			112			2.03	
rsenic	20	20	NLE	0.6			0.8		1	0.404	
eryllium •	1	1 1	NLE	2.4		1	1.5		1	ND	
admium	1	1 1	NLE			l .	257			14.3	
hromium	120000	NLE	NLE	1,280		1	4.29			ND	
hromium, (hexvalent)	NLE	NLE	NLE	ND 150			317		1	13.8	
opper	600	600	NLE			1	339			11.7	
ad	400	600	NLE	178		1	6.4		1	ND	
ercury	14	270	NLE	4,4					1	22	
kel	250	2400	NLE	68.4		1	62.3		1	ND	
ver	110	4100	NLE	1.7		1	2.2		1	0.104	
hallium	2	2	NLE	ND		1	ND 388		1	55	
line	1500	1500	NLE	362	yana di jer		1 380	osiossides	na o digitale		and the same
OMPOUNDS (units)	(ppm)	·	(ppm)	(ppm) 22,000	are qui l'au rour	nsignar <u>e</u> o scen	(mag)	OTHER PARTY.		(ppm)	armere <u>s</u>

R bgs - feet below ground surface NLE _ No Level Established MOL - Method Detection Limit ppm - parts par million Q - Chushier D - Dávad

		1		1		- 1				
Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Contact Soil Cleanup Criteria	Impact to Groundwater Soil Cleanup Criteria	MDL	TPS-B1-1 310-006 1.0 01/17/00 CONC C	וסא ב	TPS-B1-5 310-007 5.0 01/17/00 L CONC Q		PS-B1-10 318-001 10.0 01/18/00 CONC	•
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)		(ppm)	_
Dilution Factor	***	-	<u> </u>				,	ļ,		<u>.</u>
VO+10				1	l <u>.</u>	1	1			
Toluena	1000	1000	50		ND	1	ND NO		0.22 ND	
Chlororbenzene	37	680	1		ND	_	ND		0.22	e the
TOTAL TARGETED VOS:	***		•••		ND 1,880	ļ	4		ND	
FOTAL NON-TARGETED VOS:			***************************************		,,,,,,,,,		diamental de la constante de l			-
COMPOUNDS (units)	(ppm)	(ppm)	a production of the second second second second second second second second second second second second second		(ppm)		(ppm)		(ppm)	
Dilution Factor		••						<u>. </u>		
BN+15							1	1 1		
	3400	10000	100	ı	ND		ND	{	ND	
Acenaphthene Acenaphthylene	NLE	NLE	NLE	1	ND		מא		ND	
vcenzprimyrene Anthracene	10000	10000	100		ND		ND		ND	
vnirvacene Senzo(a) anthracene	0.90	4	500		0.76		ND		ND	
senzo(a)pyrene Senzo(a)pyrene	0.66	0.66	100	1	1.07		ND	, l	ND	
senzo(a)pyrene Benzo(b)fluoranthene	0.90	4	50 .	1	2.67		ND		ND	
Benzo(g,h,i)perylene	NLE	NLE	NLE	1	0.63	1	ND		ND	
senzo(k)fluoranthene	0.90	4	500	1	1.93	•	ND	1	ND	
lis(2-ethylhexyl)phthalate	49	210	100			J l	ND **	i i	0.51	
istz-et iyinekyijpini ialate lenzidine	NLE	NLE	NLE	ŧ	ND		ND	1 1	ND	
hrysene	9	40	500	I	0.60		ND		ND	
Dibenzofuran	NLE	NLE	NLE	1	ND		ND	1	ND	
Dibenzo(s,h)anthracens	0.66	0.66	100	1	ND	-	ND		ND	
Dibenzo(a,ii)antikaceke Fluoranthene	2300	10000	100	1	1.28		ND		ND	
Fluorene	2300	10000	50	ı	ND		ND		ND	
ndeno(1,2,3-cd)pyrene	0.90	4	4		0.44	J ,	l NO		'ND	
2-Methytnaphthalene	NLE	NLE	NLE	1	ND	1.8	ND	12.7	ND	
Naphthalene	230	4200	100		4,570	D [.	26.3		ND	
Phenanthrene	NLE	NLE	NLE	1.	0.49	J [ND		ND	
Pyrene	1700	10000	100	1 ;	0.89	1	DI	1.5	ND	
1,3-Dichlorobenzene	5100	10000	100		. ND		ND		ND	
1,4-Dichlorobenze	570	10000	- 100		ND		ND		ND	
1.2-Dichlrobenzene	5100	10000	50	1 -	ND		ND		ND	
TOTAL TARGETED BNs:	-		**	- 4	4,581.09		26.3		0.51	
TOTAL NON-TARGETED BNs:	-				ND	- 1			12435 ND	į
Dioxin	<u> </u>	••	The second of th		ND	نال	- DM		ND.	_
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)		(ppm)	-
Dilution Factor	1	- I								_
Priority Poliutant Metals		 	· · · · · · · · · · · · · · · · · · ·							
	1]]	NLE		7.91	-	8.21		0.28	
Arsenic	20	20	NLE	1	/ '2'	- 1	ND	1	ND	
Beryllium			NLE	1	1.27	- 1	ND	1	ND	
Cadmium Chaomium	120000	NLE	NLE		1,079	- 1	143	1 .	6.59	
Chromium Chromium, (hexvalent)	NLE	NLE	NLE		ND	- 1	ND	1	ND	
Copper	600	600	NLE	-	37	- 1 -	. ND	1	1.44	
Lead	400	600	NLE		51.6] .	ND		3.46	
Mercury	14	270	NLE		0.098		0.159	1	0.03	
mercury Nickel	250	2400	NLE	1	50.6		8.07	1	2.49	
Nicker Silver	110	4100	NLE	-	ND	١.	ND	1	ND.	
o⊪ver Thallium	2	2	NLE	1	ND		ND	1 .	ND	
Thailium Zinc	1500	1500	NLE	_l_	162		37.6	<u> </u>	3.84	
	d	And the second s		manifestration					and the side of the	
OMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)		(ppm) 45,000	_
COMPOUNDS (PROTE)					58,000		71,000			

R bgs - feet below ground surface NLE _ No Level Established MOL - Method Datecton Limit pprs - perte per million CI - Qualifier D - Olluted

	·	•	. •				NO.	Autod Not Desects		6.80
Enviro-Sciences, Inc. Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Contact Soil Cleanup Criterta	impact to Groundwater Soil Cleanup Criteria		TPS-82-1 318-002 1.0 01/18/00 CONC Q	MDL	TPS-B2-5 318-003 5.0 01/18/00		TPS-B2-10 318-009 10.0 01/18/00 CONC	0
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	Two C	(ppm)		(ppm)		(ppm)	_
Dilution Factor		**			******					
VO+10	·							l		
Taluene	1000	1000	50		ND ND	1	ND ND		ND ND	
Chlororbenzene	37	680	1	+	ND	+	ND		ND	بعدودر
TOTAL TARGETED VOS: TOTAL NON-TARGETED VOS:				<u> </u>	ND	<u>.</u>	1		98	 -
		4	and when any Transfer		(ppm)	τ	(ppm)		(ppm)	_
COMPOUNDS (units)	(ppm)	(ppm)		┪	(ppm)	 	(ppm)	 	(pprint	
Dilution Factor	<u> </u>	**		+						_
BN+15	į.					1	l			
Acenaphthene	3400	10000	100		ND	1	ND	· .	1.10	
Acenaphthylene	NLE	NLE	NLE		ND	ĺ	ND	l .	ND	
Anthracene	10000	10000	100	^	ND		ND	1	ND	
Benzo(a)anthracene	0.90	4	500		0.66	1	ND		NO	
Benzo(a)pyrene	0.66	0.66	100		0.61	1.	ND		ND .	
Benzo(b) fluoranthene	0.90	4	50		1.14		ND	1	ND	
Benzo(g,h.i)perylene	NLE .	NLE	NLE		0.22 J		ND		ND	
Benzo(k)fluoranthene	<i>-</i> 0.90	4	500	1	0.63		ND .		ND	
3is(2-ethylhexyl)phthalate	49	210	. 100 .		0.96		ND .	l	DM	
enzidine	NLE	NLE	NLE	"	ND		ND		0.32	•
hrysene	9	40	500		0.34		ND		ND	
Dibenzofuran	NLE	NLE	NLE		ND	1.	ND		0.68	
Dibenzo(a,h)anthracene	0.66	0.66	100		ND		ND		ND	
Fluoranthene	2300	10000	100		0.79	1 .	ND		ИD	
Fluorene	2300	10000	50		ND	1863	ND		0.28 ND	,
Indeno(1,2,3-cd)pyrene	0.90	4	4		0.21 J		ND			
2-Methylnaphthalene	NLE	NLE	NLE	d.,	ND	100	ND		4.80	
Naphthalene	230	4200	100		0.73		ND	100	2.57 0.19	
Phananthrana	NLE	NLE	NLE		NO	1.7	ND ND		ND ND	•
Pyrene	1700	10000	100		0.58	ļ				
1,3-Dichlorobenzene	5100	10000	100	1.00	ND	l .	ND		0.22	•
1,4-Dichlorobenze	570	10000	100		ND		ND		0.47 0.29	
1.2-Dichirobenzena	5100	10000	50		6.84	 	ND ND		10.92	
TOTAL TARGETED BNs: "		**	**	4 🗀	ND		17.19		959.39	
TOTAL NON-TARGETED BNs:		**			NO	+	ND		ND	الكبيس
Dioxin					1.10	<u> </u>		نىدا،		
COMPOUNDS (units)	(ppm)	(ppm)			(ppm)		(ppm)		(ppm)	
Dilution Factor	_	••				<u> </u>		<u> </u>	,,,,,	
Priority Pollutant Metals				1 . 7			1		1	
	1 00	20	NLE		38.90	Ι.	0.78		1.38	
Arsenic	20	1	NLE	١.	0.82	1	0.43	· .	ND	
Beryllium	!	1 1	NLE NLE		1.30	1.	ND		ND	
Cadmium	120000	NLE	NLE		5,240	1	34.20		12.8	
Chromium Chromium, (hexvalent)	NLE	NLE	NLE		ND		ND	1	ND	
	600	600	NLE		110		4,78		15	
Copper	400	600	NLE	1	192		7.84	1	4.27	
Lead	14	270	NLE		6.50	1 .	0.10	Ĭ .	ND	
Mercury Nickel	250	2400	NLE		308	1.	7.30	1	2.06	
	110	4100	NLE		0.86		ND	1	ND	
Silver The item	2	2	NLE		0.29	1	ND		ND	
Thallium Zinn	1500	1500	NLE	1: "	420	1.	11.70	1	3.6	_
Zinc	1 1000	1000	, 166	-	L. initia					
OMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)	1	(ppm)	

It bgs - feet below yound suffice NLE ... No Level Exciplished MOL - Method Detection Limit ppm - parts per million Q - Question D - Dished

Enviro-Sciences, Inc.					* 1	•		Not Den Concetima	en derected below	WOL.
Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Contact Soil Cleanup Criteria	Impact to Groundwater Soil Cleanup Criteria	MDL	كالمستكرن المستوع	MD	in contralingue a		TPS-B3-10 364-005 10.0 01/19/00 CONC	Q
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)	-	(ppm)	
Dilution Factor	-	**								
VO+10							1	1	·	
Toluene	1000	1000	50	-	0.38 J		ND	1	ND	'
Chlororbenzene	37	680	1	<u> </u>	0.69 J		ND		ND	
TOTAL TARGETED VOS:	***	-	***	1	1.07		ND	1	ND	
TOTAL NON-TARGETED VOs:					ND		ND	And the same of the same	ND .	
	and the second second second second second					حسبت	para menalawa ang minimena			·
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	4	(ppm)	+-	(pem)		(ppm)	
Dilution Factor		-	<u></u>	1	····	<u> </u>				
BN+15					l		1	1		
	3400	10000	100		0.75		ND		ND	
Acenaphthene	NLE	NLE	NLE		0.82	1	ND		ND	
Acenaphthylene Anthracene	10000	10000	100		1.98		ND		ND	
***************************************	0.90	4	500		4.31		ND		ND	
Benzo(a)anthracene	0.50	0.66	100		2.79		ND		ND	
Benzo(a)pyrene Benzo(b)fiuoranthene	0.86	4	50		2.76		ND	1 .	ND	
	NLE	NLE	NLE		1.36	1	ND	1	ND	
Benzo(g,h,l)perylene Benzo(k)fluoranthene	0.90	4	500		1.13	1	ND	1 .	ND	•
	49	210	100	13	0.78	1	ND	1	ND	
Bis(2-ethylhexyl)phthalate Benzidine	NLE	NLE	NLE		ND		ND	1	ND	
	9	40	500	1"	2.97		ND	1	ND	
Chrysene	NLE	NLE	NLE		ND		ND	1:	ND .	
Dibenzoluran	0.66	0.86	100		0.88	1	ND	1	ND	1
Dibenzo(a,h)anthracene	2300	10000	100		4.41	1	ND		NO	
Fluoranthene	2300	10000	50	1	0.51		ND	1	ND	
Fluorene	0.90	4	1 ~		1.38	١,	ND	1.	ND -	
Indeno(1,2,3-cd)pyrene	NLE	NLE	NLE .		0.35	, · ·		10.5	ND	
2-Methylnaphthalene	230	4200	100	100	3.94		0.13		ND	
Naphthalens Phenanthrens	NLE	NLE	NLE		2.25		ND	1	ND	
•	1700	10000	100		5.26		ND		ND	
Pyrens 1,3-Dichlorobenzens	5100	10000	100	5.5	ND		. DO		ND	
1,4-Dichlorobenze	570	10000	100	127	ND ·		ND		ND	
1.2-Dichlobenzene	5100	10000	50		ND	<u> L</u>	ND	<u> </u>	ND	
TOTAL TARGETED BNs:	-		44		38.62		0.13		ND	
TOTAL NON-TARGETED BN		-	-		20.66	1.	25.59		12.54	John Steen
Dioxin		-	44	7.0	ND	I	ND		ND	
	and the second s					سمعرست	عدن بایجینیدیدیدیدیدیدیدیدیدیدیدیدیدیدیدیدیدید		· · · · · · · · · · · · · · · · · · ·	وسيجوبون
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	1_	(ppm)		(ppm)		(ppm)	
Dilution Factor	-	-				_ _				
Priority Poliulant Metals					1		. [1		,
	20	20 .	NLE		105		2.06		2.6	
Arsenic	20	1	NLE		0.869		ND	1	0.609	
Beryllium Codesium	;		NLE		2.21		ND	1.	0.259	
Cadmium Chromium	120000	NLE	NLE	1	376	1	27	1	43	
Chromium Chromium, (hexvalent)	NLE	NLE	NLE	.	ND	- 1	ND	1	ND ·	
Chromium, (nexvalent)	600	600	NLE		295	1	7.34		20.7	
Copper . Lead	400	600	NLE	,	337	- 1	5.63		11.8	
Mercury	14	270	NLE		2.47	- [0.032	1	ND	
Mercury Nickel	250	2400	NLE	1	64.5		7.72	1	39.8	
Nickei Silver	110	4100	NLE	1	2.31		ND		ND	
Silver Thailium	2	2	NLE		0.42	- 1	ND	'	0.093	
Zinc	1500	1500	NLE	1.	499		18.4		72.3	
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)		(ppm)	
CONFUNICO MINDI	, \PP/1//	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			18.000	and the same of	1.400		3.100	

NLE _No Level Established MDL - Method Detaction Limit ppm - parts per million Q - Qualifier

D - Diluted

Enviro-Sciences, Inc							J - Concetetation de	nected b	plant MDL
Sample ID Number Laboratory Sample Number: Depth Collected (it bgs) Date Sampled;	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Contact Soil Cleanup Criteria	Impact to Groundwater Soil Cleanup Criteria	MDL	TPS-C1-1 310-010 1.0 01/17/00 CONC Q		TPS-C1-5 310-011 5.0 01/17/00 CONC Q	MDL	PS-C1-10 384-006 10 01/19/00 CONC Q
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		· (ppm)		(ppm)	_	(ppm)
Dilution Factor					··				
VO+10						1			
TOTAL TARGETED VOS: TOTAL NON-TARGETED VOS:		•••			S ND		ND ND		ND ND
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	7	(ppm)	T	(ppm)		(ppm)
Dilution Factor		-	**	1					
BN+15	<u> </u>					Т			
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,t)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran	3400 NLE 1000 0.90 0.68 0.90 NLE 0.90 49 NLE 9 0.66	10000 NLE 10000 4 0.56 0.66 NLE 4 210 NLE 40 0.68 NLE	100 NLE 100 500 100 50 NLE 500 100 NLE 500		11.7 50.4 75.2 304 281 391 219 130 ND 27.1 259 61.2 18.7 ND		ND 0.4 0.4 1.4 2.0 2.3 1.5 0.9 0.4 ND 0.8 0.5 ND		
Di-n-butylphthalata	5700	10000	100	1	740	1 :	2.2		ND
Fluoranthene	2300	10000	100 100	1	37.5		ND		ND
Fluorene	2300 0.90	10000	500	1 .	190		1.3		ND_
Indeno(1,2,3-cd)pyrene	0.90	NLE	NLE		4.4 J		ND		ND
2-Methylnaphthalena	230	4200	100	1	28.3	1.	0.4	l .	ND
Naphihalene Phenanthrene	NLE	NLE	NLE	1 .	414		1.0	Ι.	ND
Pyrene	63	3100	100		581		2.8		ND
TOTAL TARGETED BNs:				1	3,823.5	1,	18.4		ND
TOTAL NON-TARGETED BNs:	_				474.2	-	ND		ND ·
Dioxins	-		**		ND		ND	T :	ND

COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Oilution Factor	-	**			 _ · · · · · · · · · · · · · · · · · · 	
Priority Pollutant Metals				1 1		
Arsenic	20	20	NLE	15.1	14.6	0.75
Beryllium	1	1	NLE	ND	ND	0.32
Cadmium	1	1 1	· NLE	1.3	ND	ND
Chromium	120000	NLE	NLE	11,700	14,400	14.80
Chromium, (hexvalent)	NLE ·	NLE	NLE	22.1	ND	ND
Copper	600	600	NLE	50.7	12.4	9.78
Lead	400	600	NLE	119	25.6	5.34
Mercury	. 14	270	- NLE	. 1.2	2.2	ND
Nickel	250	2400	NLE	241	138	12.20
Silver	110	4100	NLE	ND	ND	ND
Thallium	2	2	NLE	ND	ND	ND
Zinc	1500	1500	NLE	343	114	31.10
	(more)	(00m)	(ppm)	(ppm)	(ppm)	(ppm)
COMPOUNDS (units)	(ppm)	(ppm)	Mapini,	59,000	49,000	1.000
Total Organic Carbon	-	1				A Company of the Comp

R bgs - feet below ground surface

SUMMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED JANUARY 17, 2000 - JANUARY 19, 2000 STANDARD CHLORINE KEARNY, NEW JERSEY

NLE_No Level Established
MCL - Method Detection Limit
ppm - parts per finition
G - Cuartier
D - Dated

ND - Not Den

Env	iro-Sci	iences,	inc.
-----	---------	---------	------

Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	RESIDENTIAL Direct Contact Soil Cleanup Criteria	NON-RESIDENTIAL Direct Conjact Soil Cleanup Criteria	Impact to Groundwater Soil Cleanup Criteria	TPS-C2-1 318-004 1.0 01/18/00 MDL CONC Q	TPS-C2-5 316-005 5.0 01/18/00 MDL CONC Q	TPS-C2-10 384-007 10.0 01/19/00 MDL CONC Q
COMPOUNDS (units)	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)
Difution Factor	-				ļ	
VO+10					<u> </u>	
TOTAL TARGETED WOOD			P4-0	ND	I NO	NO

TOTAL TARGETED VOs:	***	400			ND	1 1	ND	1 1	NO
TOTAL NON-TARGETED VOS:	***				ND		ND]	ND
							to to the same are the		
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)		(ppm)		(ppm)	}	(ppm)
Dilution Factor	-					<u> </u>		ļ,	,
BN+15			•						
Acenaphthene	3400	10000	100	1 1	15.4		ND	ľ	ND
Acenaphthylene	NLE	NLE	NLE	-	39.8		ND	1	ND
Anthracene	1000	10000	100	1 1	127.0		0.2 J	1	ND ND
Benzo(a)anthracene	0.90	4	500		260.0	1 1	0.9 0.5		ND
Benzo(a)pyrene	0.66	0,66	100	li	217.0		0.5	1 1	ND
Benzo(b)fluoranthene	0.90	4.00	50	1 . }	310.0		0.8	1 1	ND
Benzo(g,h,i)perylene	NLE	NLE	NLE	. 1	99.4 1 <i>14.0</i>	1 1	0.3	1 1	ND
Benzo(k)fluoranthene	0.90	4	500	1 .1	5.8		ND	1 1	ND .
Bis(2-ethylhexyl)phthalate	49	210	100		32.9		ND		ND
Carbazole	NLE	NLE	NLE			1 '	0.4		ND
Chrysene	9	40	500	1	200.0		ND		ND
Dibenzo(a,h)anthracene	0.66	0.56	100		37.8		,		
Dibenzofuran	NLE	NLE	NLE		20.8	F	ND .		ND
Di-n-butylphthalate	5700	10000	100		ND		ND	1	ND
Fluoranthene	2300	10000	100	'	733.0	- 1	.1.4		ND
Fluorene	2300	10000	100		45.7		ND		ND
Indeno(1,2,3-cd)pyrene	0.90	4	500		94.4	1 1	0.3		DN
2-Methylnaphthalane	NLE	NLE	NLE		7.0 J		ND	1 : 1 : 1	ND
Naphthalene	230	4200	100	1 1	21.1		ND		ND
Phenanthrene	NLE	NLE	NLE		521.0		0.4	4.	ND
,	63	3100	100	17 / 1	503.0		1.4		ND
Pyrena Page 170 BN 2			144	-	3,405.2	1	6.8		ND
TOTAL TARGETED BNs:	,	-			373.2		111.3	,	ND
TOTAL NON-TARGETED BNIK				+	ND	177.	ND	1	ND
Dioxina		(· ••			110	1	170		

COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pom)
Dilution Factor						<u> </u>
Priority Pollutant Metals						14/00 ×
Arsenia	20	20	NLE	10.5	0.6	2.36
Beryllium	1	1	NLE	0.5	ND	0.40
Cadmium	1	1 1	NLE	3.3	טא ן	ND
Chromium	120000	NLE	NLE	2,790	} + i 51.3	25.50
Chromium, (hexvalent)	NLE	NLE	NLE	ND	ND	ND
Copper	600	600	NLE .	115	5.2	20.90
Lead	400	600	NLE	118	3.1	7.52
Mercury	. 14	270	NLE	2.9	0.1	ND
Nickel .	250	2400	NLE	72.1	2.2	15.30
Silver	110	4100	NLE	0.6	ND	ND
Thallium	. 2	2	NLE	0.2	ND	ND
Zinc	1500	1500	NLE	300	8.3	39.00
						(
COMPOUNDS (units)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) 890
Total Organic Carbon				40,000	49.000	1 990

NLE_No Level Established MDL - Method Detection Limit pom - parts per militart

Q - Dualifer

D - Danted

NO - Not Datected

Enviro-Sciences, Inc.		J - Conceptitation detected below MOL

	nviro-sciences, inc.			and the second s	-		more seems to be	Committee to the Committee of the Commit	_		
			LIAN ACAINCIPE	Impact to		TPS-C3-1		TPS-C3-5	1 7	TPS-C3-10	
	ample ID Number	RESIDENTIAL	NON-RESIDENTIAL		1		•		1 '	364-005	
L	aboratory Sample Number:	Direct Contact	Direct Contact	Groundwater	1	318-006		310-007			
D	epth Collected (ft bos)	Soit Cleanup	Soil Cleanup	Soil Cleanup	1	1.0		5.0	1 .	10.0	
	late Sampled:	Criteria	Criteria	Criteria	1	01/18/00		01/18/00		01/19/00	
•	ate sampes.	QIIIDIN2	01107-		MOL	CONC Q	MOL	CONC C	MDL	CONC	Q
_	ALMA 1150 (- 1-1	(/\		 	(ppm)		(ppm)		(ppm)	
	OMPOUNDS (units)	(ppm)	(ppm)			ТРРИСТ	_	(1935.11)		100.07	
	ilution Factor				╂		-				
	O+10 ····		<u> </u>		4		ļ.,		-	1 210	
	OTAL TARGETED VOS:			,	1 1	ND	1	20		ND ND	
Ţ	OTAL NON-TARGETED VOs:	444		***	1	ND		ND		טא ן	
_		The state of the s				المراجع والمراجع و					
₹	OMPOUNDS (units)	(ppm)	(ppm)	(ppm)	1	(ppm)	<u> </u>	(ppm)		(ppm)	
D	ilution Factor		-		1		<u> </u>				
-	N+15				1						
*	IIX.iX				1 1			N.D	1.		
A	cenaphthene	3400	10000	. 100	1 1	ND		ND]	ND	
Α	cenaphthylene	NLE	NLE	NLE	1 1	ND		ND		ND	
A	nthracene	1000	10000	100	1	0.35		ND	1 '	ND	
В	enzo(a)anthracene	0.90	4	500		1.66		0.2	.	מא	
	enzo(a)pyrene	0.66	0.66	2100		1.76	. '	, 0,1 J		ND	
	enzo(b)fluoranthene	0.90	0.66	50		2.56		0,2 J	'	ND	
	enzo(g,h,i)perylene	NLE	NLE .	NLE		0.75		ND		ND 1	
	enzo(k)fluoranthene	0.90	4	500		1.08		ND	1 .	ND	
	is(2-ethylhexyl)phthalate	49	210	100		7.04	.	ND	1	ND	
	arbazole	NLE	NLE	NLE		ND		ND	. 1	ND	
_	hrysene	9	40 .	500		1.61	•	0.1		ND	•
	Hbenzo(a,h)anthracene	0.66	0.66	100		0.23	1	ND	ì	ND	
	Pibenzofuran	NLE	NLE	NLE		ND	٠	ND	1	ND	
_		5700	10000	100	1 80	ND -		ND		ND	
	i-n-butylphthalate		10000	100		3.61		0.4	1.	ND	
	luoranthene	2300				ND		ND	1 .	ND	
-	luorene	2300	10000	100			1	ND	١.	ND	
ţr	ndeno(1,2,3-cd)pyrene	0.90	4	500		0.75			1	ND	
2	-Methylnaphthalene	NLE	NLE	NLE		ND		ND			
N	laphthalene	230	4200	100		ND		ND		ND	
	henanthrene	NLE	NLE	NLE	100	1.02		ND		ND ·	
-	vrene	63	3100	100	1 "	2.96		0.4		ND	
£	OTAL TARGETED BNs:				7.	25.38		1.5		ND	
	OTAL NON-TARGETED BNs:					2,679	. : .	56		ND	
_					1	ND		ND	- · · ·	ND	
ĵ	Piexins	**				.,,,,				<u> </u>	
		•									
7	OMPOUNDS (units)	(ppm)	(ppm)	(ppm)	1	(pom)	T	(ppm)		(ppm)	
) (PARIL)	165-4117								
- 1).	•	
	ilution Factor			***			-	I	+	· · · · ·	
	ilution Factor Priority Pollutant Metals								·	Ī	
2	riority Pollutant Metals					13.5		0.5		0,75	
P	<u>riority Pollutant Metals</u> usenic	20	20	NLE		13.5				0.75 0.32	
PAB	<u>riority Pollutant Metals</u> usenic Ieryllium	20	20 1	NLE NLE		13.5 0.3		0.5 ND			
PAB	<u>riority Pollutant Metals</u> usenic	20 1 - 1	20 1 1	NLE NLE NLE		13.5 0.3 1.9		0.5 ND ND		0.32 ND	
PABO	<u>riority Pollutant Metals</u> usenic Ieryllium	20	20 1	NLE NLE NLE NLE		13.5 0.3 1.9 4,580		0.5 ND ND S3		0.32 ND 14.80	
PABOO	<u>riority Pollutent Metals</u> ursenic Jeryllium Cadmium Chromium	20 1 - 1	20 1 1 NLE NLE	NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580 ND		0.5 ND ND 53 ND		0.32 ND 14.80 ND	
PABOOO	riority Pollutent Metals ursenic Jeryllium Jadmium Chromium Chromium Chromium, (hexvalent)	20 1 - 1 120000	20 1 1 NLE	MLE NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580		0.5 ND ND 53 ND 11.5		0.32 ND 14.80 ND 9.79	
PABOOOO	Priority Pollutent Metals ursenic teryllium admium chromium chromium chromium, (hexyalent)	20 1 - 1 120000 NLE 600	20 1 1 NLE NLE	NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580 ND	1	0.5 ND ND 53 ND		0.32 ND 14.80 ND 9.79 5.34	
PABOCOCI	Priority Pollutent Metals ursenic teryllium Cadmium Chromium Chromium Chromium Copper	20 1 - 1 120000 NLE 600 400	20 1 1 NLE NLE 800 800	HLE NLE NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580 ND 67.2	1	0.5 ND ND 53 ND 11.5		0.32 ND 14.80 ND 9.79	,
PABOCOCLA	Priority Pollutent Metals ursenic teryllium Chromium Chromium Chromium Chromium, (hexvalent) Copper Jead	20 1 - 1 120000 NLE 600 400	20 1 1 NLE NLE 800 800 270	MLE NLE NLE NLE NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580 ND 67.2 100 1.7		0.5 ND ND 53 ND 11.5 2.7		0.32 ND 14.80 ND 9.79 5.34 ND	
P ABOCCOLAR	Priority Pollutent Metals ursenic teryllium Chromium Chromium Chromium, (hexvalent) Copper Jead Aercury	20 1 1 120000 NLE 600 400 14 250	20 1 1 NLE NLE 800 800 270 2400	MLE NLE NLE NLE NLE NLE NLE NLE NLE NLE		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1		0.32 ND 14.80 ND 9.79 5.34 ND 12.20	
PABCCCCLANS	Priority Pollutent Metals ursenic teryllium Chromium Chromium Chromium, (hexvalent) Copper ead Aercury lickel Silver	20 1 1 120000 NLE 600 400 14 250	20 1 1 NLE NLE 800 800 270 2400 4100	HLE NLE NLE NLE NLE NLE NLE NLE NLE NLE N		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1 ND		0.32 ND 14.80 ND 9.79 5.34 ND 12.20 ND	
PABCCCCLANS	Priority Pollutent Metals ursenic teryllium Chromium Chromium Chromium, (hexvalent) Copper Jead Aercury	20 1 - 1 120000 NLE 600 400 14 250 110	20 1 1 NLE NLE 800 800 270 2400 4100 2	HLE NLE NLE NLE NLE NLE NLE NLE NLE NLE N		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1 0.6	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1 ND		0.32 ND 14.80 ND 9.79 5.34 ND 12.20 ND	
P ABOCCUL NOT	Priority Pollutent Metals ursenic teryllium Chromium Chromium Chromium, (hexvalent) Copper ead Aercury lickel Silver	20 1 1 120000 NLE 600 400 14 250	20 1 1 NLE NLE 800 800 270 2400 4100	HLE NLE NLE NLE NLE NLE NLE NLE NLE NLE N		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1 ND		0.32 ND 14.80 ND 9.79 5.34 ND 12.20 ND	
P ABOCCUL NOT	Priority Pollutent Metals Investigation Investiga	20 1 - 1 120000 NLE 600 400 14 250 110	20 1 1 NLE NLE 800 800 270 2400 4100 2	HLE NLE NLE NLE NLE NLE NLE NLE NLE NLE N		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1 0.6	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1 ND ND 94.2		0.32 ND 14.80 ND 9.79 5.34 ND 12.20 ND ND 31.30	·
PARCOCULANSTA	Priority Pollutent Metals Investigation Investiga	20 1 - 1 120000 NLE 600 400 14 250 110	20 1 1 NLE NLE 800 800 270 2400 4100 2	HLE NLE NLE NLE NLE NLE NLE NLE NLE NLE N		13.5 0.3 1.9 4,580 ND 67.2 100 1.7 94.1 0.6	1	0.5 ND ND 53 ND 11.5 2.7 0.3 2.1 ND		0.32 ND 14.80 ND 9.79 5.34 ND 12.20 ND	

NOTES.

to bos - leet below ground surface

LEL - Lowest Effects Level

2CF - 20ARA Eustra reser

ADL - Method Detection Limit

(%)

77.56

15.10

(%)

28.33

70.25

1.24

21.95

74.14

3.60

rn - parts per milit

bus - brace be

D - Déuted

MO - Not Describe

	•					NO - Not Detected			
Enviro-Sciences, Inc.		-	Q	·		J - Concentration date	cled below	MOX.	
Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Data Sampled;	Marine/Estuarine Screening Guidelines ER-L (1)	Marine/Estuarine Screening Guidelines ER-M (2)	MDL	TPS-A1-1 310-001 1.0 01/17/00 CONC Q	MDL	TPS-A2-1 310-002 1.0 01/17/00 CONC Q	MOL	TPS-A3-1 310-004 1.0 01/17/00 CONC	
COMPOUNDS (units)	(ppm)	(ppm)	2 in 10 in 20 in 20 in 1	(ppm)		(ppm)		(ppm)	_
Dilution Factor		**			ļ	·	╀-		
/olatile Organic			1 1			l	1		
3enzene	0.34	** .	1 1	ND		ND .	1	ND	
Frichioroethylene	1.6		1 1	ND		, ND		ND	
Fetrachloroethylene	0.45	-	1.1	ND		ND		ND	
Ethylbenzene	1.4		1 1	ND	ŀ	ND .		ND	
Toluene	2.5	••	1 1	, ND		ND		ND	
Cylene	>0.12	**	11	ND	٠	ND		ND	-
20MOOUNDO AW	Anna N	(ppm)		(ppm)	1	(ppm)		(ppm)	_
COMPOUNDS (units)	(ppm)	(bhui)	+	(hhiri)	+	<u> </u>	1	15.5	_
Dilution Factor Polynuclear Aromatic	 		 		 		1		
Cenaphihene	0.016	0.5		ND		ND.		. 0.25	
• •	0.016	0.5		ND .	1	ND	1	2.22	
Acenaphthylene	0.044	1.1		ND		0.16 J	1	4.85	
Anthracene		1.1		0.77 J		0.65	1	15.00	
Benzo(a)anthracene	0.261			ND ND	1	0.54	1	13.20	
Benzo(a)pyrene	0.43	1.6 320		ND ND	1	0.40	1	4.50	
Benza(g,h,l)perylana	0.17	·	1	ND	1	0.28		6.65	
Benzo(k)fluoranthene	0.24	1,340 2.8		ND	1	0.53		11.20	
Chrysene	0.384 0.063	0.26	1	ND		ND		1.77	
Dibenzo(a,h)anthracene	0.60	5.1	1	1.01 J	1	1.14	•	41.20	
Fluoranthene	0.019	0.54		ND ND		ND .	1	0.81	
Fluorene	0.019	320	1	ND	1	0.36		4.91	
ndeno(1,2,3-cd)pyrene	0.20	0.67	1 1	ND	1 .	ND ·		ND	
2-Methylnaphthalene	0.07	2.1		200	1 .	0.48		0.64	
Naphthalene	0.16	1.5	1 1	ND		0.44	1	4.32	
Phenanthrene	0.685	2.6	1 1	1.01 J		0.97 3	1	26.90	
Pyrene Total PAHs	4	45	+	202.788		5.96	<u> </u>	138.22	_
							_		
COMPOUNDS (units)	(ppm)	(ppm)	 	(ppm)	 	(ppm)	+-	(ppm)	_
Ollution Factor Priority Pollutant Metals			١ .			1	 		_
Arsenic	8.2	70		19.5	1	8.8		31.4	
Padmium Cadmium	1.2	9.6	1 1	0.9		0.6	1 "	. 2.4	
Chromium	81	370	1 1	3,207		3,197		1,280	
Copper	34	270	:	45.4		17.4		150.0	
Lead	47	218	1 :: 1	131	1 .	81.4	1	178.0	
Mercury	0.15	0.71		0.4		0.2	I	4.4	
Nickel .	21	52	1 4	208	1.	173	1	68	
	1	3.7	1 1	ND	1	ND		1.7	
Silver			1	l	1	193		352	
Silver Zinc	150	410		288		100	nder and the		***
Zinc	150			Commence of the State of the St				(nom)	-
		(ppm)		(pom) 20,000		(ppm) 25,000	<u> </u>	(pom) 22,000	-

(%)

COMPOUNDS (units)

Total Particle Size

Percent Silt and Clay

Percent Gravel

Percent Sand

^{(1) •} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies.

⁽²⁾ ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

^{**}If results are bolded and italicized, results exceed the ER-L or ER-M values.

NLE _ No Level Established

UDL - Method Detection Limit

O - Outsider D - Demed ND - Not Detected

Enviro-Sciences, Inc.		• .	. •				J · Concentrator	n detec	ned balow	Y OL	
Sample ID Number Laboratory Sample Number: Depth Collected (ft bgs) Date Sampled:	Marine/Estuarine Screening Guidelines ER-L (1)	Marine/Estuarine Screening Guidelines ER-M (2)		TPS-B1-1 310-006 1.0 01/17/00			TPS-B2-1 318-002 1.0 01/18/00			TPS-B3-1 310-008 1.0 01/17/00	_
		<u></u>	MDL,		Q M	DL.	CONC	Q.	MDL	CONC	Q
COMPOUNDS (units)	(ppm)	(bbw)		(ppm)			(ppm)		ļ	(ppm)	
Dilution Factor			ļ		_					·	
Volatile Organic	1					1				ND	
Benzene	0.34	- '		ND			ND ON			ND	
Trichloroethylene	1.6	- .		ND ND			ND			ND	
Tetrachloroethylene	0.45 1.4	-	١.	ND			סא			ND	
Ethylbenzene Toluene	2.5	ļ. <u> </u>		ND			ND			0.38	
Xylene	>0.12			ND	- 1	.	ND	-		ND	
		L.,									
COMPOUNDS (units)	(nam)	(ppm)		(ppm)		,	(ppm)	Michael		(ppm)	
	(ppm)		+	Approis	- -					11:15:1-1	
Dilution Factor	-		 							<u> </u>	-
Polynuclear Aromatic	1			No :			ND			0.75	
Acenaphthene	0.016	0.5		ND ·			D D			0.73	
Acenaphthylene	0.044	0.64		ND ND			ND			1.98	
Anthracene	0.085	1.1			- 1		0.66	,.		4,31	
Benzo(a)anthracene	0.261	1.6		0.76 1.07			0.61			2.79	
Benzo(a)pyrene	0.43	1.6 320		0.63	1.		0.22	ای		1.36	
Benzo(g,h,i)perylene	0.17 0.24	1,340		1.93	-		0.63	. •	1 .	1.13	
Benzo(k)fluoranthene	0.384	2.8		0.80	- 1	٠.,	0.34			2.97	
Chrysene Dibenzo(a,h)anthracene	0.083	0.26		ND.	1		ND			0.88	
Fluoranthene	0.60	5,1			J		0.79	:		4.41	
Fluorene	0.019	0.54		ND		. /	ND	i		0.51	
Indeno(1,2,3-cd)pyrene	0.20	320 ,		0.44	J		0.21	j		1.38	
2-Methylnaphthalene	0.07	0.67		ND	· ·	•	· ND		•	0.35	J
Naphthalene	0.16	2.1		4570	D .	٠,.	0.73		,	3.94	
Phenanthrene	0.24	1.5			J		ND			2.25	
Pyrane	0.665	2.6		0.89			0.56		<u> </u>	5.26	
Total PAHs	4	45	<u>.</u>	4578.09	<u> </u>	_	4.75	-		35.09	
	T (22m)	(ppm)	7	(ppm)			(ppm)		1	(ppm)	
COMPOUNDS (units) Dilution Factor	(ppm)	(ppin)	1	Тракто	_					W.C	
Priority Pollutant Metals	 					,	i				
Arsenic	8.2	70		7.9	-	• •	38.9			105.0	
Cadmium	1.2	9,6		1.27	1.	- 1,	1.3		1.3	2.2	
Chromium	81	370		1,079			5,240			376	
Copper	34	270		37.0			110.0			295.0	
Lead	47	218		52		٠:	192			337.0	
Mercury	0.15	0.71	1	0.098	·		6.5		1	2.5	
Nickel	21	52		50.6	- 1.		308 0.9			65 2.3	
Silver	1 1	3.7		ND	-1.	Ţ,	420		100	499	
Zinc	150	410	1	162			1 420	······································		433	ecarity.
		4	T		T		(mmm)	-		(ppm)	
COMPOUNDS (units)	(ppm)	(ppm)	-	(ppm)			(ppm)		 	18,000	
Total Organic Carbon		-		58,000		-	11,000		<u> </u>	18,000	
	1	101	I	1015			r 9/.1			(%)	eritera.
COMPOUNDS (units)	(%)	(%)	 	(%)			(%)		 	1 °/	
Total Particle Size	* .	1] [
Percent Gravel	-	_		42.55	1		31.94			88.23	
Percent Sand	, m			52.93		,	65.33			5.38	
	1	4 '		I			1 000			1 460	

^{(1) -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies.

Percent Silt and Clay

⁽²⁾ ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

[&]quot;If results are bolded and italicized, results exceed the ER-L or ER-M values.

D · Distract

ND - Not Detected

Enviro-Sciences, inc.						ND - Not Detected J - Concentration o		below M	OL.	
Sample ID Number	Marine/Estuarine	Marine/Estuarine	1	TPS-C1-1		TPS-C2-1	T	. •	TPS-C3-1	
Sample to Northber Laboratory Sample Number:	Screening	Screening		310-006		318-004	ı		318-006	
	Guidelines	Guidelines		1.0	ļ .	. 1.0			1.0	
Depth Collected (fl bgs)		ER-M (2)		01/17/00	l	01/18/00	I		01/18/00	
Date Sampled:	ER-L (1)	Er-M (2)	MDL		a MOL	CONC	alı	MDL.	CONC	اٺ
COMPOUNDS (units)	(ppm)	(ppm)		(ppm)		(ppm)			(ppm)	
Dikution Factor		-	 							
/olatile Organic							·		ND .	
Senzene	0.34	-		ND	'	ND	į	l	ND .	
Crichloroethylene	1.6	-		ND ND		ND ND		ı	· ND	
Tetrachioroethylene	0.45	-				ND		l	ND	
Ethylbenzene	1.4	-		ND ON		ND	ŀ	- 1	ND	
Toluene	2.5 >0.12		1 .	· ND	,_	ND	ŀ	1	ND	
Kylene	3 . 70.12			. 112					***	
COMPOUNDS (units)	(ppm)	(ppm)		(ppm)		(ppm)	Ī		(ppm)	
Dilution Factor										
Polynuclear Aromatic	1.		1		1		\neg			_
Acenaphthene	0.016	0.5		11.7]	15.4			ND	
Acenaphthylene	0.044	0.64	1 1	50.4		39.8	1		ND	
Anthracene	0.085	1.1		75.2		127	1		0.35	
Benzo(a)anthracene	0.261	1.6		304	1.	260	1		1.66	
Benzo(a)pyrene	0.43	1.6	1.	281	Ι΄.	217	· 1	, .	1.76	
Benzo(g,h,l)perylene	0.17	320	1 -	219		99			0.75	
Benzo(k)fluoranthene	0.24	1,340	1	130	İ	114			1.08	
Chrysene	0.384	2.8	1	259	1 .	200		.]	1.61	
Dibenzo(a,h)anthracene	0.063	0.26	1	· <i>61</i>	ł	35			0.23	
luoranthene	0.60	5.1	1 • 1	740	1.	733			3.61	
Fluorene	0.019	0,54	1 . 1	37.5	1 .	46		· . :	ND	
ndeno(1,2,3-cd)pyrene	0.20	320		190		94 7		100	0.75 ND	
2-Methylnaphthalene ""	0.07	0.67			j	21	١,		ND	
Naphthalene	0.16	2.1 1.5	100	28.3 414		521			1.02	
Phenanthrene Pyrene	0.24 0.665	2.8		581		503	- ["	2.96	
Total PAHs	4	45		3386.7		3035.6			15.78	
TOGETATIS										
COMPOUNDS (units)	(ppm)	(ppm)	T	(ppm)		(ppm)			(ppm)	
Dilution Factor	-									
Priority Pollutant Metals			3.3-				1	$x_{i}\in \mathcal{P}$		
Arsenic	8.2	70		15.1		10,5			13.5	
Arsenic Cadmium	1.2	9.6		1.3		3.30	- 1	7,	· 1.90	
Chromium	81	370	-11	11,700	1.00	2,790	.		4,580	
Copper	34	270		50.7	4.11.1	115.0	- 1		67.2	
Lead	47	218		119		118	1		100	
Mercury	0.15	0.71		1.2	4.50	2.900	1	\odot	1.700	
Nickel	21	52		241	9.7	72.1			94.1	
Silver 🔑	1	3.7		ND		0.6	1	•	0.6 224	
Zine	150	410		343		300			224	-
		T					-	er er er er er er		
COMPOUNDS (units)	(ppm)	(ppm)		(ppm)		(ppm)	\dashv		(ppm)	
Fotal Organic Carbon		<u> </u>		59,000		40,000		-	17,000	
	. /0/	(%)	7	(%)	1	(%)	T		(%)	
COMPOUNDS (units)	(%)	1 70)	+	l '°'	 	T	-			
Total Particle Size				20.00	1	71.03			50,40	
Percent Gravel	-	-	· .	32.87	1			٠.	i	
Percent Sand		_	ı	61.25	- I.	25.83			42.01	
Percent Silt and Clay		1	1 .	5.55		3.02		* *	7.39	

^{(1) -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies.

⁽²⁾ ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

[&]quot;"If results are bolded and italicized, results exceed the ER-L or ER-M values.

REMEDIAL ACTION WORKPLAN

November 2000

Standard Chlorine Chemical Company, Inc. 1035 Belleville Turnpike Kearny, New Jersey

Table 3 – Summary of Sediment Analytical Results McLaren-Hart – September 23 – 24, 1992 and May 25 – 26, 1993

TABLE 3

SUMMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED SEPTEMBER 23-24, 1992 AND MAY 25-26, 1993 BY MCLAREN-HART STANDARD CHLORINE KEARNY, NEW JERSEY T.E?

act webereteten.

LEL - Lawert Errett Lave

Til. - beres Ellary Leve

ALE, ha Love Estats or es USL: Memos Seven — . —

5 5.44

2.5.43

NO No Sevenes

Enviro-Sciences, Inc.

Sample ID Number Laboratory Sample Number: COMPOURIDS funits Dilution Factor Date Sampled: Volatile Organic Benzene Ethylbenzene	Manne/Estuarine Screening Guidelines ER-L (1)	Manne-Estuanne Screening Gudeines ER-M (2)	MOL_	3-55-125			:3.55.*25	:	***3.52.*2	53
Dilution Factor Data Sampied: Volatile Organic Benzene			I MDL		_			i		
Dilution Factor Data Sampied: Volatile Organic Benzene				CONC		ಚರಿಬ	coxc	<u> </u>	221.0	
Data Sampled: Volatile Organic Benzene	44	4-	-	10000				:	.55-	\equiv
Volatile Organic Benzene			<u> </u>					•		
Benzene		-	1	05 25 93			08 28 93	•	06 35 93	
			1 1			i		ı	•	
Ethylbenzana I	0.34	-	1 1	ND	.		C . 4	į	NO	
	1.4	-	1 1	ND			0.73		CN	
Taluene	2.5	-	i i	ND	1		0017	,	NO.	
Xviana	>0.12		<u> </u>	ND	!	į	0.16	<u> </u>	ND	
							Acres and the second		,	
COMPOUNDS (units)	(ppm)	(mca)	1	(17100)	Ī		(2577)	Ĭ	(225)	
Daution Factor	- 1	_	<u> </u>					1		_
Date Sampled:	*		(09,23,92	- 1		09 23 92		CS 23.92	
Polynuclear Aromatic			l I			1			1	
Acenaphihene	0.016	0.5		0.34	ŀ	1	5.9	-	СN	
Acenaphinylene	0.044	0.64] }	0.19	- 1		0.52		СИ	
Anthracene	0.085	1.1	1 1	0.82		- 1	5.9	l	0.067	
Benzo(a)anihracene	0.251	t. 6	l	3.00		- 1	7.8	ı	0.26	
Benzo(a)pyrene	0.43	1.6		2.90	1	i	6.4	ı	0.3	
Benzo(g,h,i)perylene	0.17	320	1 1	0.77	- 1	- 1	2.3		0.043	
Benzo(k)fluoranthene	0.24	1.340		ND .	1		ND		ND	
Chrysena	0.384	2.8	1 1	NO	1	1	8	- 1	0.27	
Dibenzo(a.h)anthracene	0.063	0.26	1 1	מא	1	- 1	0.63	- 1	ND	
Pluoranthene	0.60	5.1	1 1	7.20	ı.	- 1	10	ı	0.68	
Fluorene	0.019	0.54	1	0.20		Į.	4.2	1	ND	
ngeno(1,2.3-cd)pyrene	0.20	320	l í	0.10	ı	. [2.2	i	NO	
2-Mathylnaphthaiene	0.07	0.67	1 1	0.17	- 1	ľ	0.69	- 1	0.054	
Vaphthalene	0.16	2.1		1.1	- 1	- 1	0.72		0.5	;
Phenanthrene	0.24	1.5	1 1	1.50	- 1	t	20	- 1	0.18	
Pyrene	0.655	2.5		7.10	- 1	1	17	F	061	
Coal PAris	4	45	<u> </u>	25.39			93.67	ļ ļ	2.964	_
COMPOUNDS (units)	(ppm)	(חפס)		והמכו			(0077)		toomi	يسمع
Dilution Factor		**	i 			i			1,00	
Date Sampled:			 	9-23-92		1	09.23.52		09/23/92	
esticides			 						1	
hiorgane	0.007		1 1	ND	I	1	ND	1	ND .	
Dieldrin	0.002	-]]	0.0072	ŀ	I	ND	Í	ND	
	0.002		<u> </u>	9.00/2		!			1 70	
OMPOUNDS (units)	(pom)	(ppm)		(ccm)	i	1	(pom)	1	i (pom)	_
Date Sampled		**	1 1	9.23/92		·····	09 23 92	!	09/23/92	
PCB (total)	0.023	0.18	i T	- w1 5, alf 47 E	i	ī	436352		25.53.52	
Arocior 1248	0.03	150		NO		1	ND		0.03	
Aroctor 1254	0.06	34		ND	1	l	מא	1	ND	

^{10 -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10%, cf studies

ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

[&]quot;If results are bolded and italicized, results exceed the ER-L or ER-M values.

TABLE 3

Aroctor 1248

Aroctor 1254

SUMMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED SEPTEMBER 23-24, 1992 AND MAY 25-26, 1993 BY MCLAREN-HART STANDARD CHLORINE KEARNY, NEW JERSEY

Enviro-Sciences, Inc.				Dis Divines NO Not Divinesses La Conservation contra	19306 7 MT.
Sample ID Number Laboratory Sample Number:	Manne/Estuanne Screening . Guidelines ER-L (1)	Manne-Estuanne Screening Guidelines ER-M (2)	113-SE-1284	1:2-52-1265	**3-86-1562
		and the second of the second o	Programme of the filter may be settled to the second content of	INDE COND C.	'M21 7212
COMPOUNDS (units)	(pom)	((\$355)	100111	1 (30%	
Dilution Factor	<u> </u>		05.26.93		
Volatile Organic		-	02.56.43	25.25.93	19 38 93
Benzene	0.34		ND	0.41	
Ethylbenzens	1.4	_	ND	NO NO	: XI
Toluene	2.5		ND ND	NC	ולא בא
Xviene	>0.12	-	NO	פא	NC NC
			1 1 1		1 10
COMPOUNDS (units)	(ppm)	(pcm)	(pom)	(83/5)	1227.
Dilution Factor			1	100****	
Date Sampled:	**	-	09/23/92	09/23/92	
Polynuclear Aromatic			1	43.63.36	1 03 -3 72
Acenaphthene	0.016	0.5	ם או	7.1	NO.
Acenaphthylene	0.244	0.64	ND	2	N2
Anthracene	0.085	1.5	ND I	21	N.D
Benzo(a)anthracene	0.261	1.6	1.50	28	ND.
Benzo(a)pyrene	0.43	1.6	7.40	17	i ND
Benzo(g.h,i)perylene	0.17	320	0.48	4.9	ND
Senzo(k)Iluoranthene	0.24	1.340	0.81	ND	ND
Chrysene	0.384	2.8	1.30	מא	ND
Dibenzo(a,h)anthracene	0.063	0.26	ם מו	ND	ND
Pluoranthene	0.60	5.1	2.50	35	ND
Fluorene	0.019	0.54	NO	CN	CN
naeno(1,2.3-cd)pyrene	0.20	320	0.54	5.6	סא
2-Methylnaphthalene	0.07	0.67	NO	5.4	ND
Vaphthalene	0.16	2.1	0.48	7.6	170
Phenanthrene	0.24	1.5	0.62	43	NO ·
Pyrene	0.665	2.6	2.20	46	I ND
Total PAHs	4	45	1 11.83	1 220.6	170
COMPOUNDS (units)					
Dilution Factor	(pom)	(DOM)	(mac)	ו ידופכו	100m1
Date Sampled:		**	09/23/52	09.23/92	09:23/92
Pesticides			03/23/32	03-13-24	03.57.35
Chlordane	0.007	_	0.0051	CN	A.D.
Dieldrin	0.007		ND .	פא	ND ND
	4.445			1 10 1	I NO
COMPOUNDS (units)	(meq)	(20m)	(mag)	l (com)	(mon)
Date Sampled:		100	1 1		100000
7216 2011[0]40.		**	09:23:32	09.23/92	09:23:92

^{(1) -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies

150

34

ND

0.21

ND

NO

HD

NO

0.03

0.06

^{(2)*} ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

[&]quot;Il resuits are bolded and italicized, results exceed the ER-L or ER-M values.

REMEDIAL ACTION WORKPLAN

November 2000

Standard Chlorine Chemical Company, Inc. 1035 Belleville Turnpike Kearny, New Jersey

Table 4 – Summary of Surface Water Analytical Results ERM – August 28, 1996

TABLE 4

SUMMARY OF SURFACE WATER ANALYTICAL RESULTS OLLECTED AUGUST 28, 1996 BY ERM, INC. FANDARD CHLORINE CONTROL OF THE PROPERTY OF

octes

ncs - he und samenas

ncs - he und samenas

ncs - hend samenas

s disent

s disent

.iro-Sciences, Inc.

					-					. 20	THE POST	بعا يه	~ u:.		
Sample ID Number Laboratory Sample Number.	Acute Surface Water	Chronic Surface Water	Other, Surface Water		\$w-1		1	\$W-2			\$W-3		:	\$%-4	
Date Sampled	Quality Standards for SE Waters	Quarry Standards for SE Waters	Quality Standards for SE Waters		08.28.96		ļ	:1::H		:	74 TE 84			C& 25.25	
				MCL	CONC	C	i rot	CONC	=	42.	***	:	LES.	5215	=
COMPOUNDS (units)	(ug/L)	rug-Li	luß_l	1	ייזוסקי			1227			55.0		بهيريب البراغايات	100-	
Senzone			71 ~	5	NC		5	. NS	-	9 ,	1,2			NO.	
Bromatorn			360 (***	9	NO		9	NO.		4	1.2			NC -	
Carbon tetrachionde			531 ~~	s	NO		5	N2		š i	1/2		5	NO.	•
Chloropenzene			210007	5	ND		5	NO.			:::		5	NO.	
Chloroform			470 ' ^{rer}	5	ND	i	5	K2			NC.	•	• -	NO	
1.2-Dichtoropenzens]		16500 PH	5	1.57	J	5	1.43			513			314	
1,3-Dichloropenzene		;	22200 ^{(M}	5	ND	•	ا فا	NC.	•		4 56			N.2	٠
1,4-Oxchlorobenzona	•	İ	3159 🞮	8	1.47		ء ا	1 21			£ 3?	•	5	. —	
1.2-Dichleroethane			88 _{art}	s	ND	•	5	NC:	•	[NC.		5	1 å NC	•
Ethylbenzene	}		27900 ^{F4}	Ś	ND		5	ND			NC		3	NC NC	
Methyl bromide]		4000 PM	5	ND		5	. ND		5	NC NC				
Methylana chlonda	•		1600 84	5	NO.		5	NC		s	ND	•	5	ND	
Totrachioroethylene			4 29 Pm	5	N/O	4	5	ND GN		5	CN		5	ND	
Toluena	i	į	200000 ***	5	ND ND		5	ND ON		3			5	ND	
1,2,4-Trichlorobenzene	}		113 194	5	ND		-			3	NC		5	NO	
Trichlorosmylene		•	81 400	3	ND ND		5	NO .		5	ND		5	1.63	1
Vinvi Chioride			525 ^(Aur.)	3 1			5	ND		5 j	CM		5	ND	
			353	3 (ND	!	5	CA	!	5	N2		5	ND	
Other Parameters	1						-							Control of the same of the same of	
pH		<u></u>	6.5-8.5		7.12			7 12			701		1		
Hardness		1	NLE		2500	Į		2700		.	7 CJ	i		7.13 2500	

inogenic effect-based human health criteria as a 30-day average with no frequency exceedence at or above design flows specified in NULAIC 7 98-1.5(c)2 ...jenic affect-based human health criteria as a 70-year average with no frequency of exceedence at or above the design flows specified in NULAIC 7 98-1 5(c)2

44C substances considered to be possible carcinogens as a 70-year average with no frequency exceedance at or above design flows specified in N.J.A.C. 7.9B-1.5(c)2 and are based on a risk level of one-in-one nundred thousand

REMEDIAL ACTION WORKPLAN

November 2000

Standard Chlorine Chemical Company, Inc. 1035 Belleville Turnpike Kearny, New Jersey

Table 5 - Summary of Sediment Analytical Results ERM - August 28 - 29, 1996

TABLE 5

UMMARY OF SEDIMENT ANALYTICAL RESULTS
" ECTED AUGUST 28-29, 1996 BY ERM, INC.
JARD CHLORINE
ARNY, NEW JERSEY

NCTES

Thegs - feet below ground surface

LEL - Lones: Eners Leve

SEL - Severy Effects up. 1

NC" - Maissi Calabar " = . NTE " Ma Ferin Earth Tala

** • BBF3 24 Fbm2*

C-Cure

AC - Not Celestes

Sample IO Number Laboratory Sample Number; Depth Collected (ft bgs)	Marine/Estuarine Screening Guidelines	Marine/Estuarine Screening Guidelines	1 7	SED-A1 BRI926			SED-A2 BRISSS			SEJ.43 BR:919	
Date Sampled:	ER-L (1)	ER-M (2)		8/29/96 CONC	Q	MCL	C9.28.38	0 4	2£	65.23 36 CONC	2
COMPOUNDS (units)	(ppm)	(ppm)	1	(ppm)	2.00		Idemi			(com-	energy and
Dilution Factor		-						i			-
Volatile Organic Benzens Finchloroethylene Fetrachloroethylene Ethylbenzene Coluene (ylene COMPOUNDS (units)	0.34 1.6 0.45 1.4 2.5 >0.12	(pom)		ND ND ND ND ND ND			NO NO NO NO NO NO			0 00453 ND ND 0.0157 0.00764 0.00779	
Polynuclear Aromatic	0,16	2.1	,	.00258	ار	1	0.0335				
otal PAris	4	45		.00258 .00258			0.0335			0.367 0.367	-
POUNDS (units)	(porn)	(ppm)	. (0	opm)			(ppm)	- T		(CDU)	باعجمار
Janic Carbon	•-	**	· · · · · · · · · · · · · · · · · · ·	3,500			56,650		1	59,750	
Н		*	1	6.88		<u>-</u>	6.63			6,20	

^{1) -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies.

[?] ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or life stages are found in approximately 50% of studies.

^{**}If results are boided and italicized, results exceed the ER-L or ER-M values.

ABLE 5

MARY OF SEDIMENT ANALYTICAL RESULTS **CTED AUGUST 28-29, 1996 BY ERM, INC. JARD CHLORINE .ANY, NEW JERSEY

7 Bigs - feet below ground surface

LEL-LOWER EREIS LINE

C - Diazes NO - Not Defended

iro-Sciences, Inc.						J. 33rtemer :	- tre	1.40 58 5	a V.Z.	e de la constante de la consta
ple ID Number matory Sample Number; th Collected (It bgs) Sampled:	Manne/Estuarine Screening Guidelines ER-L (1)	Manne/Estuanne Screening Guidelines ER-M (2)	SED-61 6R1933 08-78-96 MDL CONC	c	MOL	SED-82 BRI334 08-29-95 CONC		MOL	SED-83 BR #35 C3 29 95 CONC	
IPOUNDS (units)	(com)	(pom)	(ppm)			(com.		171 20 2	(55.40	, ed
on Factor	•					1,000	-i			-
itile Organic			i r				Ť	1	***************************************	
zene	0.34	-	NO			מא		1	ND	
nloroethylene	1.6	-	מא			GN	ı	- 1	ND	
schloroethylene	0.45	-	NO.	- 1		ND	- 1	1	ND.	
ibenzana	1.4		CN	- 1		ND	i	1	CA	
ena	2.5	-	NO	ı	1	ND	ŀ		CA	
ńę ·	>0.12		l l ND			CN			ND	#
APOUNDS (units)	(ppm)	(ppm)	(pem)	Ī	يهى سبحد عند	(pom)	İ		{ccw,	
ion Factor		••								-
nuclear Aromatic			i I				Ť	1		-
rthaiene	0.16	2.1	0.00357	J	- 1	9.00655	J	- 1	0.00744	
I PAHs	4	45	0.00357			Q.00583			0.00744	_
*NDS (units)	(ppm)	(com)	(maa)			Annan b	_			
anic Carbon		- (pp.1.1)	33.450	ᆉ		(ppm) 24,550	-+		(com)	_
	-	-	33,430	!	}	£4.55U			22.050	_
		**	7.52		ì	7.50	ī	T	7.59	-

ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 10% of studies. ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive species and/or tile stages are found in approximately 50% of studies.

I results are boilded and italicized, results exceed the ER-L or ER-M values.

TABLE 5

SUMMARY OF SEDIMENT ANALYTICAL RESULTS COLLECTED AUGUST 28-29, 1996 BY ERM, INC. STANDARD CHLORINE KEARNY, NEW JERSEY MOTES

il Diffe - book bosson granded and see

LEL - Lovens Etheran Love

SET - Saves & Euerd Feren

THE . THE LINE WILLIAM AND

DOM - B-ETS des makes

9.0mi=

C - Davies NC - Net Deserves

Enviro-Sciences, Inc.

- Concertage assessed here MCL

			2 . Create Attitute (Section 5 before at
Sample ID Number Laboratory Sample Number:	Marme/Estuarine Screening	Marine-Estuarine Screening	SED-C1 BRI940
Depth Collected (ft bgs)	Guidelines	Guidelines	
Date Sampled:	ER-L(1)	ER-M (2)	08-28/96
			MDL CONC Q
COMPOUNDS (units)	(mqa)	(pom)	(DOM)
Oilution Factor		**	1
Volatile Organic			
Benzena	0.34		NO
Trichloroethylene	1.6		СИ
Tetrachiorosthylens	0.45	. ••	NO
Ethylbenzene	1.4	-	ND
Tokiene	2.5	. ••	ND
Xylene	>0.12		NO
COMPOUNDS (units)	(ppm)	(ppm)	(pom)
Dilution Factor	-		
Polynuciear Aromatic			
Naphthalene	0.15	2.1	. פא
Total PAHs	4	45	1 0
COMPOUNDS (units)	(mad)	(ppm)	(mag)
Total Organic Carbon		4-0	45.050
pH]		4 46

^{(*) -} ER-L (Effects Range-Low): Concentration at which adverse benthic impacts are found in approximately 50% of studies.

⁽E) ER-M (Effects Range-Median): Concentration at which adverse effects to sensitive spacies and/or title stages are found in approximately 50% of studies.

[&]quot;"If results are bolded and italicized, results exceed the ER-L or ER-M values.

2002 EPA Superfund Contract Support Team Sampling Report

TABLE 1 - VOLATILE ORGANIC COMPOUND SAMPLE SUMMARY

VOCs	SC-SED-01	SC-SW-01	SC-SED-02	SC-SW-02
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	NĐ.	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	3 J	ND	12 JQE
Methyl acetate	ND	ND	ND .	ND
Methylene chloride	ND	ND	ND	ND
rans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND '	ND	ND .	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	3 J
Chloroform	ND -	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND ND	ND	ND	ND
3enzene	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
rans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
1-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	5 J
Ethylbenzene	ND	ND	ND	ND
n,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
sopropylbenzene	ND	ND	· ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
QE - Result is estimated because during validation	for accuracy, it was for	ind to be below the fo	ver acceptance criteria	
ID - Non detect				

TABLE 1 - VOLATILE ORGANIC COMPOUND SAMPLE SUMMARY

VOCs	SC-SED-03	SC-SW-03	SC-SED-04	SC-SW-04
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	13JQE	ND	2 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND .	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	3 J	ND .	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	4 J	ND	ND
Ethylbenzene	ND	ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND.	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND ,
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
JQE - Result is estimated because during validation				
ND - Non detect	1		<u> </u>	
J - At a low level, the compound was detected, how	ever the numerical res	ult is estimated.		
o 7% a low lovel, the compound was detected, now			- 	

TABLE 1 - VOLATILE ORGANIC COMPOUND SAMPLE SUMMARY.

VOCs	SC-SED-05	SC-SW-05	SC-SED-06	SC-SW-06
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND .	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	5 J	ND	ND
Acetone	ND	3 J	ND	27 JQE
Methyl acetate	ND	ND	ND.	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND .	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	5 J
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	ND	ND	8 J
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	- ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND ·
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND .	2 J
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	51
Ethylbenzene	ND	ND	ND	3 J
m,p-Xylene	ND	ND	ND	7 J
o-Xylene	ND	ND	ND	4 J
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
JQE - Result is estimated because during validation	for accuracy, it was fo	und to be below the lo	wer acceptance criteria	
ND - Non detect				
J - At a low level, the compound was detected, how	ever, the numerical res	ult is estimated.		

VOCs	SC-SED-07	SC-SW-07	SC-SED-08	SC-SW-08
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND .	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	. ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND .
Acetone	ND	ND	ND	16 JQE
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	3 J	ND	3 J
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	39	ND	9 J
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	6 J	ND	3 J
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	860 J	260 J	ND	68 JQP
Ethylbenzene	ND	7 J	ND	2 J
m,p-Xylene	ND	8 J	ND	4 J
o-Xylene	ND	6 J	ND	2 J
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
JQE - Result is estimated because during validation				
	ibi accuracy, it was it	The second will be	The state of the s	
ND - Non detect J - At a low level, the compound was detected, how	over the numerical sec	ult is estimated		
			teria	
JQP - The result was estimated because sample re	picate precision did no	Theer acceptance cr	inena . ID	110

TABLE 1 - VOLATILE ORGANIC COMPOUND SAMPLE SUMMARY

VOCs	SC-SED-09	SC-SW-09	SC-SED-10	SC-SW-10
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1.1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND .	9.0 J	ND	6.0 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	2.0 J	ND	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND .
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	3.0 J	ND	2.0 J
Ethylbenzene	ND	ND ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	· ND
	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	IND	IYU	110	110
ND - Non detect		ult in antimated		
J - At a low level, the compound was detected, how	ever, the numerical res	suit is estilliated.		
· · · · · · · · · · · · · · · · · · ·				

TABLE 1 - VOLATILE ORGANIC COMPOUND SAMPLE SUMMARY

VOCs	SC-SED-30	SC-SW-30	SC-SED-11	SC-SW-11
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	v. ND
Trichlorofluoromethane	ND	ND	ND	ND
1.1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	6.0 J	ND	9.0 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
rans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	3.0 J
Ethylbenzene	ND	ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND -	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
ND - Non detect				
J - At a low level, the compound was detected, how	rever the numerical res	ult is estimated		

VOCs	SC-SED-12	SC-SW-12	SC-SED-13	SC-SW-13
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	N.D	ND	ND	ND
Bromomethane	ND	2.0 J	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND .	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	22 JQE	ND	5.0 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	4.0 J	ND	ND
Chloroform	ND	ND	ND	ND
	ND	ND	ND	ND
1,2-Dichloroethane 1,1,1-Trichlororethane	ND	ND	ND	ND
_ ii.	ND	ND	ND ND	ND
Cyclohexane Carbon Tetrachloride	ND	ND	ND	ND
	ND	8.0 J	ND	ND
Benzene	ND	ND	ND	ND
Trichloroethene	ND	ND ND	ND ND	ND
Methylcyclohexane	ND	ND	ND ND	ND
1,2-Dichloropropane	ND	ND	ND ND	ND
Bromodichloromethane	ND	ND	ND ND	ND
cis-1,3-Dichloropropene	ND	ND	ND ND	ND
trans-1,3-Dichloropropene		ND	ND ND	ND
1,1,2-Trichloroethane	ND	ND ND	ND ND	ND ND
Dibromochloromethane	ND ND	ND	ND ND	ND
Bromoform		ND ND	ND ND	ND
4-Methyl-2-pentanone	ND ND	2.0 J	ND ND	ND
Toluene			ND ND	ND
Tetrachloroethene	ND ND	ND ND		ND ND
2-Hexanone	ND ND	ND	ND	ND
1,2-Dibromomethane	ND	ND 24	ND 44,000	
Chlorobenzene	ND	31	14,000	3.0 J
Ethylbenzene	ND	4.0 J	ND	ND
m,p-Xylene	ND	6.0 J	ND	ND ND
o-Xylene	ND	4.0 J	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
JQE - Result is estimated because during validation	for accuracy, it was for	and to be below the lo	wer acceptance criteria	
ND - Non detect				
J - At a low level, the compound was detected, how	ever, the numerical res	It is estimated.		

VOCs	SC-SED-14	SC-SW-14	SC-SED-15	SC-SW-15
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND ·	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	5.0 J	ND	5.0 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
	ND ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	IND	110	 	
ND - Non detect		cult is estimated	1.	
J - At a low level, the compound was detected, how	vever, the numerical re-	out to constated.		1.

VOCs	SC-SED-16	SC-SW-16	SC-SED-17	SC-SW-17
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	. ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND
Acetone	ND	6.0 J	ND	4.0 J
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Велгене	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	2200 J	ND	2000 J	ND
Ethylbenzene	ND	ND .	ND	ND
m,p-Xylene	ND	· ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropyibenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	. ND	ND
ND - Non detect				
J - At a low level, the compound was detected, how	ever, the numerical res	ult is estimated.		
	1.			
<u></u>		1	• • •	

Dichlorodifluormethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	Ug/Kg ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/Kg ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ND ND ND ND ND ND ND ND ND ND ND ND ND
Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND TO ND ND ND ND ND ND ND
Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND 5.0 J ND ND ND
Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND S.0 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND 5.0 J ND ND
Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND S.0 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND 5.0 J ND ND
Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND S.0 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND 5.0 J ND ND
1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 5.0 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 5.0 J ND ND ND
1,1,2-Trichloro-1,2,2-Trifluoroethane Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 5.0 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND 5.0 J ND ND ND
Carbon Disulfide Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 J ND ND ND ND ND ND	ND ND ND ND ND	5.0 J ND ND ND
Acetone Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND	ND ND ND
Methyl acetate Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND	ND ND
Methylene chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND ND	ND ND ND ND	ND ND	ND
trans-1,2-Dichloroethene cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND ND	ND ND ND	ND	
cis-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND ND	ND ND	l	
Methyl tert-butyl ether 1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND ND	ND		ND
1,1-Dichloroethane 2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND		, ND	ND
2-Butanone Chloroform 1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND		ND	ND
1,2-Dichloroethane 1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane		ND	ND	ND
1,1,1-Trichlororethane Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
Cyclohexane Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane		ND	ND	ND
Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
Carbon Tetrachloride Benzene Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND .	ND	ND
1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	· ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND :	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone ,	ND	ND	ND	ND
1,2-Dibromor/iethane	ND	ND	ND	ND
Chlorobenzene	2000 J	9.0 J	2100 J	9.0 J
Ethylbenzene	ND	ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND .	ND	ND
1,2-Dibromo-3-chloropropane /	ND	ND	ND	ND
ND - Non detect				
J - At a low level, the compound was detected, however, the	ne numerical res	sult is estimated.		
SC-SED-31 is a duplicate of SC-SED-18 and SC-SW-31 is	ic numerical les			

VOCs	SC-SED-19	SC-SW-19	SC-SED-20	SC-SW-20
	ug/Kg	ug/L	ug/Kg	ug/L
Dichlorodifluormethane	ND	ND	ND	3.0 J
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND.	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND -
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	3.0 J
Acetone	ND	5.0 J	ND	11 JQE
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	. ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	. ND
1,1-Dichloroethane	ND	ND	. ND	ND
2-Butanone	ND	ND	ND	2.0 J
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Benzene	ND	15	ND	29
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	250,000	250 J	43,000	600
Ethylbenzene	ND	ND	ND	2.0 J
m,p-Xylene	ND	ND	ND	5.0 J
o-Xylene	ND	ND	ND	2.0 J
	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND ND	ND	ND
1,2-Dibromo-3-chloropropane				
JQE - Result is estimated because during validation	nor accuracy, it was to	und to be below the lo	wer acceptance critera	1
ND - Non detect		16 1		
J - At a low level, the compound was detected, how	eyer, the numerical res	uit is estimated.		ļ

VOCs	SC-SED-21	SC-SW-21	TB-01	TB-02
	ug/Kg	ug/L	ug/L	ug/L
Dichlorodifluormethane	ND .	ND	ND	ND
Chloromethane	ND	ND	ND ··	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ND	ND
Carbon Disulfide	ND	37	ND	ND
Acetone	ND	3.0 J	ND	ND
Methyl acetate	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichlororethane	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND
Carbon Tetrachloride	. ND	ND	ND	ND
Benzene	ND	23	ND	ND
Trichloroethene	ND	ND	ND	ND
Methylcyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND
Toluene	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND
1,2-Dibromomethane	ND	ND	ND	ND
Chlorobenzene	41,000	760	ND	ND
Ethylbenzene	ND	ND	ND	ND
m,p-Xylene	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
Isopropylbenzene	ND	ND	· ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
ND - Non detect			·	
J - At a low level, the compound was detected, how	rever, the numerical res	sult is estimated.		
The state of the s				
		·		

VOCs	RB-01			
	ug/L			
Dichlorodifluormethane	ND			
Chloromethane	· · ND			
Vinyl Chloride	ND			
Bromomethane	ND	-		
Chloroethane	ND			
Trichlorofluoromethane	ND			
1,1-Dichloroethene	ND			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND .		-	
Carbon Disulfide	ND			
Acetone	2 J			
Methyl acetate	ND			
Methylene chloride	ND			
trans-1,2-Dichloroethene	ND			
cis-1,2-Dichloroethene	ND			
Methyl tert-butyl ether	ND			
1,1-Dichloroethane	ND			
2-Butanone	ND			
Chloroform	ND			
1,2-Dichloroethane	ND			
1,1,1-Trichlororethane	ND			
Cyclohexane	ND			
Carbon Tetrachloride	ND			
Benzene	ND			
Trichloroethene	ND		 	
Methylcyclohexane	ND			
1,2-Dichloropropane	ND			
Bromodichloromethane	ND			
cis-1,3-Dichloropropene	ND			
trans-1,3-Dichloropropene	ND			
1,1,2-Trichloroethane	ND			
Dibromochloromethane	ND			
Bromoform	ND		 	
	ND			
4-Methyl-2-pentanone Toluene	ND			
Tetrachloroethene	ND			
	ND			
2-Hexanone	ND ND			
1,2-Dibromomethane	ND			
Chlorobenzene	ND			
Ethylbenzene	ND			
m,p-Xylene	ND	-		
o-Xylene	ND ND			
Styrene	ND ND		-	
Isopropylbenzene				
1,1,2,2-Tetrachloroethane	ND ND			
1,2-Dibromo-3-chloropropane	ND			
ND - Non detect				
J - At a low level, the compound was detected, how	vever, the numerical re-	sult is estimated.		
	<u> </u>	١.		

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY

Base/Neutral and Acids	SC-SED-01	SC-SW-01	SC-SED-02	SC-SW-02
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	350 J	ND .	ND	ND
bis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND.	ND	ND	ND
1,3-Dichlorobenzene	ND.	ND	ND	1.0 J
1,4-Dichlorobenzene	190 J	2.0 J	560 J	4.0 J
1,2-Dichlorobenzene	ND	ND	ND	3.0 J
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	6.2
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND ·
4-Methylphenol	270 J	ND	ND	ND
n-Nitros-di-n-propylamine	ND ·	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	12
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	7100	ND	2800	45
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	1900	ND	490 J	10
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	1.0 J
Acenaphthylene	10000	3.0 J	2500	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	5600	1.0 J	1200 J	2.0 J
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	6000	ND	1100 J	2.0 J
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	8300	ND	1600	ND
Diethylphthalate	210	ND	ND	ND
4-Chlorophenyl phenyl ether	ND ND	ND	ND	ND
4-Nitroaniline	ND ND	ND.	ND .	ND
	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	IND	IND :	110	
J - Due to a low level, the result is ND - Non-detect	verified, but not qua	ahitified		-

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-01	SC-SW-01	SC-SED-02	SC-SW-02
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	63000	5.1	11000	ND
Anthracene	23000	4.0 J	4600	ND
Di-n-Butyl phthalate	ND	ND	ND ·	ND
Fluoranthene	97000	16	20000	ND
Pyrene	83000	19	17000	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benző(a)anthracene	61000	7.6	11000	ND
Chrysene	60000	8.6	11000	ND
bis(2-ethylhexyl)Phthalate	4700	11	ND .	ND
Di-n-octyl phthalate	ND	ND	ND	ND
Benzo(b)fluoranthene	74000	12	13000	ND
Benzo(k)fluoranthene	27000	4.3	5200	ND
Benzo(a)pyrene	63000	9.1	10000	ND
Indeno(1,2,3-cd)pyrene	43000	6.5	7200	ND
Dibenzo(a,h)anthracene	2300	ND	710 J	ND
Benzo(g,h,i)perylene	41000	6.3	6600	ND
			-	
J - Due to a low level, the result is ve	erified, but not quan	itified		
ND - Non-detect				
				· · · · · · · · · · · · · · · · · · ·

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY

Base/Neutral and Acids	SC-SED-03	SC-SW-03	SC-SED-04	SC-SW-04
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	ND	ND	ND
bis(2-chloroethyl)Ether	ND	ND	. ND	ND
2-Chlorophenol	ND.	ND	ND	ND
1,3-Dichlorobenzene	ND	1.0 J	ND	ND
1,4-Dichlorobenzene	590 J	4.0 J	ND	ND
1,2-Dichlorobenzene	ND	3.0 J	, ND	ND
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	ND
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND ·	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	11	ND	ND
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	3600	42	ND	ND
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	550 J	9.7	ND	ND
Hexachlorocyclopentadiene	ND	ND	ND .	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	5700	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	2300	2.0 J	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND ND	ND	ND	ND
4-Nitrophenol Dibenzofuran	1600	2.0 J	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND.
	2500	ND	ND	ND
Fluorene	1000	ND	340 J	ND
Diethylphthalate	ND	ND	ND	ND ND
4-Chlorophenyl phenyl ether	ND ND	ND ND	ND	ND ND
4-Nitroaniline		<u> </u>	ND	ND
4,6-Dinitro-2-methylphenol	ND ND	ND		
n-Nitrosodiphenylamine	ND ND	ND	ND	ND
		 -:t:f: o.d		
J - Due to a low level, the result is	verified, but not qua	nunea		
ND - Non-detect				<u> </u>

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-03	SC-SW-03	SC-SED-04	SC-SW-04
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	. ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND.	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	15000	ND	230 J	ND
Anthracene	7400	ND	140 J	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	31000	ND	870	ND
Pyrene	24000	ND	690	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	17000	ND	490 J	ND
Chrysene	15000	ND	640	ND
bis(2-ethylhexyl)Phthalate	ND	ND	ND	ND
Di-n-octyl phthalate	ND	ND	ND	ND ·
Benzo(b)fluoranthene	20000	ND	640	ND
Benzo(k)fluoranthene	5700	ND	260 J	ND
Benzo(a)pyrene	15000	ND	460 J	ND
Indeno(1,2,3-cd)pyrene	9000	ND	270 J	ND
Dibenzo(a,h)anthracene	920 J	ND	ND	ND
Benzo(g,h,i)perylene	7700	ND	250 J	ND .
J - Due to a low level, the result is v	erified, but not qua	hitified		
ND - Non-detect				

Base/Neutral and Acids	SC-SED-05	SC-SW-05	SC-SED-06	SC-SW-06
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	ND	ND	15
pis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND.	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	220 J	52
1,4-Dichlorobenzene	380 J	ND	350 J	79
1,2-Dichlorobenzene	ND.	ND	400 J	90
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	17
pis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	45
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
sophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	2.0 J	ND	16
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	1900	ND	520 J	77
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	ND	ND	430 J	44
Hexachlorocyclopentadiene	ND	ND	· ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	3.0 J
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	ND	ND	230 J	13
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	5.9
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Diethylphthalate	1300 J	ND .	490 J	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	ND ND	ND	ND	ND ·
	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	IND	110	110	1
1 Due to a ferri level the agent is	varified but not ass	a hitified		
J - Due to a low level, the result is	varined, but not que	a nuneu		

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-05	SC-SW-05	SC-SED-06	SC-SW-06
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND.	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	660 J	ND	730 J	3.0 J
Anthracene	ND ·	ND	ND	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	950 J	1.0 J	830 J	ND
Pyrene	940 J	1.0 J	700 J	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	ND	ND	500 J	" ND
Chrysene	420 J	ND	680 J	ND
bis(2-ethylhexyl)Phthalate	ND	ND	ND.	ND
Di-n-octyl phthalate	ND	ND	ND	ND
Benzo(b)fluoranthene	450 J	ND	850 J	ND
Benzo(k)fluoranthene	ND	ND	320 J	ND
Benzo(a)pyrene	ND	ND	570 J	ND
Indeno(1,2,3-cd)pyrene	ND	ND	430 J	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	400 J	ND
J - Due to a low level, the result is	verified, but not qua	hitified		
ND - Non-detect				
		-	<u> </u>	

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY

Base/Neutral and Acids	SC-SED-07	SC-SW-07	SC-SED-08	SC-SW-08
	ND	ND	ND	ND
Phenol	ND		ND ND	ND
bis(2-chloroethyl)Ether	ND	ND 101	<u> </u>	ND .
2-Chlorophenol	ND.	1.0 J	ND 040	29
1,3-Dichlorobenzene	200 J	65	840	
1,4-Dichlorobenzene	480 J	. 200	3000	77
1,2-Dichlorobenzene	400 J	150	930	.68
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	39	ND	24
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	37	ND	29
n-Nitros-di-n-propylamine	ND	ND	. ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	81	ND	43
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	5.9	ND	2.0 J
1,2,4-Trichlorobenzene	430 J	82	1400	33
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	410 J	270	4500	100
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	ND	40	1400	24
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	ND	1.0 J	520 J	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	· ND	ND	ND
Acenaphthene	150 J	38	2400	20
2,4-Dinitrophenol	ND ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	ND	18	1600	10
2,4-Dinitrotoluene	ND	ND	ND	ND
	ND ND	9	1000	4.9
Fluorene	200 J	ND	210 J	ND
Diethylphthalate	ND ND	ND	ND	ND
4-Chlorophenyl phenyl ether	ND ND	ND	ND	ND
4-Nitroaniline		ND	ND	ND
4,6-Dinitro-2-methylphenol	ND ND	ND	ND	ND
n-Nitrosodiphenylamine	ND	ND	IND	ND
J - Due to a low level, the result is	verified, but not qua	ahitified		
ND - Non-detect				

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-07	SC-SW-07	SC-SED-08	SC-SW-08
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND ·	ND	330 J	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	140 J	7.8	2000	4.0 J
Anthracene	· ND -	ND	630 J	ND
Di-n-Butyl phthalate	ND	ND	· ND	ND
Fluoranthene	180 J	1.0 J	2900	ND
Pyrene	160 J	ND	2800	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	ND .	ND ⁻	2000	ND
Chrysene	140 J	ND	2500	ND
bis(2-ethylhexyl)Phthalate	ND	ND	ND	ND
Di-n-octyl phthalate	ND	ND	ND	ND
Benzo(b)fluoranthene	180 J	ND	3200	ND
Benzo(k)fluoranthene	ND	ND	1200	ND
Benzo(a)pyrene	ND	ND	2200	ND
Indeno(1,2,3-cd)pyrene	ND	ND	1800	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	1600	ND
J - Due to a low level, the result is ve	rified, but not qua	hitified		
ND - Non-detect				

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY

Base/Neutral and Acids	SC-SED-09	SC-SW-09	SC-SED-10	SC-SW-10
Dase/Neutral and Alord	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	450 J	12	ND	ND
bis(2-chloroethyl)Ether	ND	ND	ND	. ND
2-Chlorophenol	ND .	ND	ND	ND
1,3-Dichlorobenzene	300 J	3.0 J	ND	-5.8
1,4-Dichlorobenzene	640 J	5.6	240 J	6
1,4-Dichlorobenzene	230 J	2.0 J	ND	2.0 J
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	6.6	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	290 J	17	ND	ND
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
	ND	ND	ND	ND
Isophorone 2-Nitrophenol	ND ND	ND	ND	ND
2,4-Dimethylphenol	ND	2.0 J	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	320 J	1.0 J	ND	ND
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	6300	33	ND	ND ·
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	2200	15	ND	ND
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	610 J	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
	700 J	3.0 J	ND	ND
Acenaphthene	ND	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	710 J	3.0 J	ND	ND
Dibenzofuran	7103 ND	ND ND	ND	ND
2,4-Dinitrotoluene	290 J	ND	ND	ND
Fluorene	310 J	ND	340 J	ND
Diethylphthalate	ND	· ND	ND	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	ND ND	IND .	110	
	ifind but not as	anitified		
J - Due to a low level, the result is	s vermed, but not qu	alimien		
ND - Non-detect				

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

SC-SED-09	SC-SW-09	SC-SED-10	SC-SW-10
ug/Kg	ug/L	ug/Kg	ug/L
ND	ND	ND	ND
ND	ND	ND	ND
ND ·	ND	ND	ND
ND	ND	ND	ND
1700	ND	330 J	ND
1100	ND	ND	ND
ND	ND	ND	ND
3400	ND	820	ND
3400	ND	790	ND
ND	ND	ND	ND
2500	ND	570 J	ND
3800	ND	800	ND
ND	ND	ND	ND
ND	ND	ND	ND
4500	ND	920	ND
1800	ND	360 J	ND
3200	ND	730	ND
2500	ND		ND
ND	ND		ND
2300	ND	580 J	ND
			·
erified, but not qua	hitified		
	ug/Kg ND ND ND ND 1700 1100 ND 3400 3400 3400 ND 2500 3800 ND ND 4500 1800 3200 2500 ND 2300	ug/Kg ug/L ND ND ND ND ND ND ND ND 1700 ND 1100 ND ND ND 3400 ND ND ND ND ND 3800 ND ND ND ND ND ND ND 4500 ND 1800 ND 2500 ND ND ND ND ND ND ND	ug/Kg ug/L ug/Kg ND ND ND ND ND ND ND ND ND ND ND ND 1700 ND ND 1700 ND ND 1100 ND ND ND ND ND ND ND ND 3400 ND 790 ND ND ND ND ND ND 2500 ND 570 J 3800 ND 800 ND ND ND ND ND ND 4500 ND ND 2500 ND 730 2500 ND 580 J ND ND ND 2300 ND 580 J

Base/Neutral and Acids	SC-SED-30	SC-SW-30	SC-SED-11	SC-SW-11
Dase/Neutral and Acids	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND ND	ND	310 J	ND
bis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND.	ND	ND	ND
1,3-Dichlorobenzene	ND	5.1	320 J	6.9
1,4-Dichlorobenzene	200 J	5.2	400 J	6.3
1,2-Dichlorobenzene	ND	2.0 J	ND	3.0 J
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	1.0 J
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	ND	ND	840	ND -
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene -	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	ND	ND	ND	ND
Hexachlorocyclopentadiene	ND	, ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND ·	ND
Acenaphthylene	ND	ND	ND	ND
2.6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	ND	ND	230 J	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Diethylphthalate	ND	ND	310 J	ND .
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	ND	ND	ND -	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	ND	ND	ND	ND
SC-SED-30 is duplicate of SC-SED)-10 and SC-SW-3	0 is a duplicate of	\$C-SW-10	-
J - Due to a low level, the result is	verified, but not qua	ahitified		
ND - Non-detect				

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-30	SC-SW-30	SC-SED-11	SC-SW-11		
• •	ug/Kg	ug/L	ug/Kg	ug/L		
Diazene, diphenyl	ND	ND	ND	ND		
4-Bromophenyl phenyl ether	ND	ND	ND	ND		
Hexachlorobenzene	ND-	ND	ND	ND		
Pentachlorophenol	ND	ND	ND	ND		
Phenanthrene	ND	ND	790`	ND		
Anthracene	ND-	ND	330 J	ND		
Di-n-Butyl phthalate	ND	ND	ND	ND		
Fluoranthene	270 J	ND	1400	ND		
Pyrene	240 J	ND	1500	ND ,		
Butyl benzyl phthalate	ND	ND	ND	ND		
Benzo(a)anthracene	ND	ND	830	ND		
Chrysene	200 J	ND	1400	ND		
bis(2-ethylhexyl)Phthalate	ND	ND	ND	1.0 J		
Di-n-octyl phthalate	ND	ND	ND	ND		
Benzo(b)fluoranthene	270 J	ND	1100	ND		
Benzo(k)fluoranthene	ND	ND	450 J	ND		
Benzo(a)pyrene	200 J	ND	860	ND		
Indeno(1,2,3-cd)pyrene	160 J	ND	620 J	ND		
Dibenzo(a,h)anthracene	ND	ND	ND	ND		
Benzo(g,h,i)perylene	170 J	ND	630 J	ND		
	,					
J - Due to a low level, the result is ve	J - Due to a low level, the result is verified, but not quanitified					
ND - Non-detect		E				
SC-SED-30 is a duplicate of SC-SEI	10 and SC-SW-	30 is a duplicate o	SC-SW-10			

Base/Neutral and Acids	SC-SED-12	SC-SW-12	SC-SED-13	SC-SW-13
Daborrio aria, aria i tota	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	370 J	31	ND	ND
bis(2-chloroethyl)Ether	ND	ND	ND	ND · ·
2-Chlorophenol	ND.	ND	ND	ND
1,3-Dichlorobenzene	ND	12	12000	6.4
1,4-Dichlorobenzene	, 310 J	15	18000	4.0 J
1,2-Dichlorobenzene	1000 J	58	6400	ND
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	8.5	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	39	ND	ND
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	· ND	ND
1,2,4-Trichlorobenzene	590 J	6.7	2500 J	ND
Benzoic acid	ND	N/A	ND ′	N/A
Naphthalene	3700	240	3400	ND
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	3900	80	660 J	ND
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	ND	ND	1400 J	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	600 J	9.3	11000	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	ND	15	3000	ND
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND	2.0 J	ND	ND
Diethylphthalate	ND	ND	2600 J	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Chlorophenyr phenyr ether	ND	ND	ND	ND
	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND ND	ND	ND	ND
n-Nitrosodiphenylamine	IND	IND		
I Donata a landard dia a sandi i	worlfied but not all	ahitified		
J - Due to a low level, the result is	vermea, par not qui	a nuneu		
ND - Non-detect	1	<u></u>		

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-12	SC-SW-12	SC-SED-13	SC-SW-13
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND .	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND.	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	1200	4.9	3300	ND
Anthracene	ND.	ND	2200 J	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	750 J	ND	9800	ND
Pyrene	550 J	ND	9300	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	ND	ND	6400	ND
Chrysene	ND	ND	8200	ND
bis(2-ethylhexyl)Phthalate	ND	ND	ND	ND
Di-n-octyl phthalate	ND	ND	ND	ND
Benzo(b)fluoranthene	350 J	ND	11000	ND
Benzo(k)fluoranthene	ND	ND	3200	ND
Benzo(a)pyrene	ND	ND	7600	ND
Indeno(1,2,3-cd)pyrene	ND	ND	4800	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	4500	ND
				· _
J - Due to a low level, the result is	verified, but not qua	hitified		
ND - Non-detect				
			<u> </u>	

Base/Neutral and Acids	SC-SED-14	SC-SW-14	SC-SED-15	SC-SW-15
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	ND	ND	ND
bis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND .	ND	ND	ND
1,3-Dichlorobenzene	5500	4.0 J	2900 J	3.0 J
1,4-Dichlorobenzene	8900	4.0 J	5100	3.0 J
1,2-Dichlorobenzene	3300	2.0 J	1600 J	ND
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	ND
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1300 J	ND	ND	ND
Benzoic acid	ND	N/A	ND	N/A
Naphthalene	4900	2.0 J	2700 J	ND ·
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	ND	1.0 J	ND	ND
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND .	ND	ND
Acenaphthylene	870 J	ND	1300 J	- ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	1200 J	ND	1300 J	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	800 J	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND ND	ND	ND	ND
Diethylphthalate	2700 J	ND	2800 J	ND
4-Chlorophenyl phenyl ether	ND ND	ND	ND	ND
4-Nitroaniline	ND ND	ND	ND	ND ·
	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	- ND	ואט	I II I	1
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ugrified but not ass	pitified		<u> </u>
J - Due to a low level, the result is		2 1161160		
ND - Non-detect	<u> </u>			<u></u>

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-14	SC-SW-14	SC-SED-15	SC-SW-15
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND.	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	4500	ND	4300	ND.
Anthracene	1600 J	ND	1700 J	ND
Di-n-Butyl phthalate	ND	ND	ND	ND.
Fluoranthene	10000	ND	8800	· ND
Pyrene	9800	ND	8500	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	6100	ND	4700	ND
Chrysene	7600	ND	6700	ND
bis(2-ethylhexyl)Phthalate	ND	1.0 J	ND	ND
Di-n-octyl phthalate	ND	ND	ND	ND
Benzo(b)fluoranthene	11000	ND	7800	ND
Benzo(k)fluoranthene	3900	ND	3100 J	ND
Benzo(a)pyrene	8100	ND	5800	ND
Indeno(1,2,3-cd)pyrene	5300	ND	3600	ND
Dibenzo(a,h)anthracene	ND	ND	ND .	ND
Benzo(g,h,i)perylene	4800	ND	3300 J	ND
J - Due to a low level, the result is v	erified, but not qua	l Initified		
ND - Non-detect				
14D 11011 dottost				

Base/Neutral and Acids	SC-SED-16	SC-SW-16	SC-SED-17	SC-SW-17
Baservediai and rolds	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	ND	ND	ND
bis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND	ND	ND	ND
1,3-Dichlorobenzene	9600	4.0 J	1200 J	13
1,4-Dichlorobenzene	13,000	. 4.2	2200	3.0 J
	4700	ND	760 J	ND
1,2-Dichlorobenzene	ND ND	ND	ND	ND
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	ND
n-Nitros-di-n-propylamine	ND ND	ND	ND	ND
Hexachloroethane	ND ND	ND	ND	ND
Nitrobenzene		ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND ND	ND ND	ND	ND ND
2,4-Dimethylphenol		ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	ND
2,4-Dichlorophenol	ND 4000 I	ND	ND	ND ND
1,2,4-Trichlorobenzene	1600 J		ND ND	N/A
Benzoic acid	ND	N/A	ND ND	ND ND
Naphthalene	5700	ND	ND	ND ND
4-Chloroaniline	ND	ND		ND ND
Hexachlorobutadiene	ND	ND	ND	ND ND
4-Chloro-3-methylphenol	ND	ND	ND	ND ND
2-Methyl naphthalene	ND	ND	ND	ND ND
Hexachlorocyclopentadiene	ND	ND	ND	ND ND
2,4,6-Trichlorophenol	ND	ND	ND ND	ND ND
2,4,5-Trichlorophenol	ND	ND	ND	
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	710 J	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND '	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	880 J	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	830 J	ND .	ND	ND
2,4-Dinitrotoluene	ND	ND	. ND	ND
Fluorene	620 J	ND	ND	ND
Diethylphthalate	2600	ND	ND	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	ND	ND	ND	ND
11-14th 0-00th lettylating				<u> </u>
J - Due to a low level, the result is	verified but not au	anitified		
ND - Non-detect	Torrica, bactrot qui			
IND - Non-detect				.1

Base/Neutral and Acids Cont.	SC-SED-16	SC-SW-16	SC-SED-17	SC-SW-17
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND.	ND:	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND·	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	4900	ND	710 J	ND
Anthracene	1800 J	ND	ND	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	12000	ND	1900	ND
Pyrene	11000	ND	1800	ND
Butyl benzyl phthalate	ND	ND	390 J	ND
Benzo(a)anthracene	7600	ND ·	680 J	ND
Chrysene	9600	ND	910 J	ND
bis(2-ethylhexyl)Phthalate	ND	ND	1400 J	ND
Di-n-octyl phthalate	ND	ND	770 J	ND
Benzo(b)fluoranthene	12000	ND	1200 J	ND
Benzo(k)fluoranthene	4500	ND	440 J	ND
Benzo(a)pyrene	9300	ND	850 J	ND
Indeno(1,2,3-cd)pyrene	5500	ND	690 J	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	4700	ND	660 J	ND
J - Due to a low level, the result is v	rerified, but not qua	nitified		
ND - Non-detect				
·				

Base/Neutral and Acids	SC-SED-18	SC-SW-18	SC-SED-31	SC-SW-31
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	ND	ND	ND
bis(2-chloroethyl)Ether	. ND	ND	ND	ND
2-Chlorophenol	ND	ND	ND	ND
1,3-Dichlorobenzene	830 J	30	580 J	30
1,4-Dichlorobenzene	1400	11	890 J	9
1,2-Dichlorobenzene	870 J	ND	500 J	ND
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	- ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	ND
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND
bis(2-chloroethoxy)Methane	ND	ND	ND	DN
2,4-Dichlorophenol	ND	ND	ND	ND
1,2,4-Trichlorobenzene	510 J	2.0 J	390 J	2.0 J
Benzoic acid	ND	N/A	9800	N/A
Naphthalene	970	ND	830 J	ND .
4-Chloroaniline	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND
2-Methyl naphthalene	ND	ND	. ND	ND
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Diethylphthalate	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	ND	ND	ND	ND
SC-SED-31 is a duplicate of SC-SE	D-18 and SC-SW-	31 is a duplicate	of SC-SW-18	
J - Due to a low level, the result is v	erified, but not qua	ahitified		
ND - Non-detect	·	1.		

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-18	SC-SW-18	SC-SED-31	SC-SW-31
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND.	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	820 J	ND	510 J	ND
Anthracene	250 J	ND	ND	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	2000	ND	1100	ND
Pyrene	1800	ND	960 J	ND
Butyl benzyl phthalate	, ND	ND	ND	ND
Benzo(a)anthracene	1000	ND	550 J	ND
Chrysene	1300	ND	690 J	ND
bis(2-ethylhexyl)Phthalate	2000	ND	840 J	ND
Di-n-octyl phthalate	250 J	ND	ND	ND:
Benzo(b)fluoranthene	1700	ND	1000	ND
Benzo(k)fluoranthene	620 J	ND	400 J	ND
Benzo(a)pyrene	1200	ND	780 J	ND
Indeno(1,2,3-cd)pyrene	900 J	ND	710 J	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	830 J	ND	710 J	ND
J - Due to a low level, the result is	verified, but not qua	nitified		
ND - Non-detect		<u> </u>		
SC-SED-31 is a duplicate of SC-S	EP-18 and SC-SW-	31 is a duplicate c	SC-SW-10	

Base/Neutral and Acids	SC-SED-19	SC-SW-19	SC-SED-20	SC-SW-20
	ug/Kg	ug/L	ug/Kg	ug/L
Phenol	ND	1.0 J	ND	5.5
bis(2-chloroethyl)Ether	ND	ND	ND	ND
2-Chlorophenol	ND	1.0 J	ND -	4.4
1,3-Dichlorobenzene	3900000	85	9300	390
1,4-Dichlorobenzene	6000000	46	. 21000	420
1,2-Dichlorobenzene	5300000	35	4600	450
Benzyl alcohol	ND	ND	ND	ND
2-Methylphenol	ND	ND	ND	ND
bis(2-chloroisopropyl)Ether	_ ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	4.0 J
n-Nitros-di-n-propylamine	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND
	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND
2-Nitrophenol	ND ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND ND	ND	ND
bis(2-chloroethoxy)Methane	ND ND	4.0 J	ND	5.7
2,4-Dichlorophenol		4.0 J	1700	45
1,2,4-Trichlorobenzene	2900000	N/A	ND ND	N/A
Benzoic acid	ND		ND ND	23
Naphthalene	23000	3.0 J	ND	ND ND
4-Chloroaniline	ND ND	ND		ND
Hexachlorobutadiene	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	
2-Methyl naphthalene	31000	ND	ND	2.0 J
Hexachlorocyclopentadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND
2-Nitroaniline	ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND
Acenaphthylene	ND	ND	· ND	ND .
2,6-Dinitrotoluene	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND
Dibenzofuran	3300 J	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Diethylphthalate	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	ND	ND	ND	ND
4-Nitroaniline	. ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND
n-Nitrosodiphenylamine	ND	ND	ND	ND
11-14(11050diprierry)arrine	1 (1)	110	+	
J - Due to a low level, the result is v	prified but not guen	itified		
	erinea, pur not quan	uned		
ND - Non-detect		<u> </u>	<u> </u>	<u> </u>

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

Base/Neutral and Acids Cont.	SC-SED-19	SC-SW-19	SC-SED-20	SC-SW-20
	ug/Kg	ug/L	ug/Kg	ug/L
Diazene, diphenyl	ND	ND	ND	, ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND
Hexachlorobenzene	ND ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Phenanthrene	9600 J	ND	760 J	ND
Anthracene	ND·	ND	ND	ND
Di-n-Butyl phthalate	ND	ND	ND	ND
Fluoranthene	12000 J	ND	1600 J	ND
Pyrene	10000 J	ND	1400 J	ND
Butyl benzyl phthalate	ND	ND	ND	ND
Benzo(a)anthracene	6800 J	ND	520 J	ND
Chrysene	9200 J	ND	800 J	ND
bis(2-ethylhexyl)Phthalate	21000	ND	1300 J	ND
Di-n-octyl phthalate	ND	ND	880 J	ND
Benzo(b)fluoranthene	11,000 J	ND	870 J	ND
Benzo(k)fluoranthene	3700 J	ND	ND	ND
Benzo(a)pyrene	6400 J	ND	590 J	ND
Indeno(1,2,3-cd)pyrene	5100 J	ND	460 J	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND
Benzo(g,h,i)perylene	5300 J	ND	500 J	ND
J - Due to a low level, the result is	erified, but not qua	hitified		
ND - Non-detect				

Base/Neutral and Acids	SC-SED-21	SC-SW-21	RB-01	
Sase/Neural and Acids	ug/Kg	ug/L	ug/L	
henol	ND	4.5	ND	
is(2-chloroethyl)Ether	ND	ND	ND	
Obleraband	ND	4.0 J	ND	
-Chlorophenol	64000	430	ND	
,3-Dichlorobenzene ,4-Dichlorobenzene	240000	610	ND	
	32000	190	ND	
,2-Dichlorobenzene	ND	ND	ND	
Benzyl alcohol	ND	ND	ND	
2-Methylphenol	ND	ND	ND	
ois(2-chloroisopropyl)Ether	ND	3.0 J	ND	
4-Methylphenol	ND	ND	ND	
n-Nitros-di-n-propylamine	ND	ND	ND	
Hexachloroethane	ND	ND	ND	
Vitrobenzene	ND	ND	ND	
sophorone	ND	ND	ND	
2-Nitrophenol	ND	ND	ND	
2,4-Dimethylphenol	ND	ND	ND	
bis(2-chloroethoxy)Methane	ND	34	ND	
2,4-Dichlorophenol	25000	200	ND	
1,2,4-Trichlorobenzene	ND	N/A	ND	
Benzoic acid	1100	5.6	ND	
Naphthalene	ND	ND	ND	
4-Chloroaniline	ND	ND	ND	
Hexachlorobutadiene	ND	ND	ND	
4-Chloro-3-methylphenol	ND	ND	ND	
2-Methyl naphthalene Hexachlorocyclopentadiene	ND	ND	ND	
Hexachiorocyclopentations	ND	ND	ND	
2,4,6-Trichlorophenol	ND	ND	ND	<u> </u>
2,4,5-Trichlorophenol	ND	ND	ND	
2-Chloronaphthalene	ND	ND	ND	
2-Nitroaniline	ND	ND	ND	<u> </u>
Dimethyl phthalate	ND	ND	ND	
Acenaphthylene	ND	ND	ND	
2,6-Dinitrotoluene	ND	ND	ND	
3-Nitroaniline	ND	ND	ND	
Acenaphthene	ND	ND	ND	
2,4-Dinitrophenol	ND	ND	ND	
4-Nitrophenol	ND	ND	ND	
Dibenzofuran	ND	ND	ND	
2,4-Dinitrotoluene	· ND	ND	ND	
Fluorene	ND	ND	ND	
Diethylphthalate	ND	ND	ND	
4-Chlorophenyl phenyl ether	ND	ND	ND .	
4-Nitroaniline	ND	ND	ND	
4,6-Dinitro-2-methylphenol	ND	ND	ND	
n-Nitrosodiphenylamine	- ND		·	
	ified but not aug	nitified		
J - Due to a low level, the result is	vernied, but not qua	THERE		
ND - Non-detect				

TABLE 2 - BASE/NEUTRAL AND ACID SAMPLE SUMMARY CONTINUED

SC-SED-21	SC-SW-21	RB-01	
ug/Kg	ug/L	ug/L	
ND	ND	ND	
ND	ND	ND	
ND·	ND	ND	
ND	· ND	ND	
4500	ND	ND .	-
1800 J	ND	ND	
ND	ND	ND	
12000	ND	ND	
11000	ND	ND	
ND	ND	ND	
9700	ND	ND	
11000	ND	ND	
1500 J	ND	ND	
ND	ND	ND	
11,000	ND	ND	
4300	ND	ND	
6700	ND	ND	
3000 J	ND	ND	
ND	NĐ	ND	
2300 J	ND	ND	
erified, but not qua	hitified		
	ug/Kg ND ND ND ND 1800 J ND 12000 11000 ND 9700 11000 1500 J ND 11,000 4300 6700 3000 J ND 2300 J	ug/Kg ug/L ND ND ND ND ND ND ND ND 4500 ND 1800 J ND ND ND 12000 ND 11000 ND ND ND 9700 ND 11000 ND 1500 J ND ND ND 11,000 ND 4300 ND 6700 ND ND ND ND ND	ug/Kg ug/L ug/L ND ND ND ND ND ND ND ND ND ND ND ND 4500 ND ND ND ND ND 1800 J ND ND ND ND ND 12000 ND ND ND ND ND ND ND ND 11000 ND ND 1500 J ND ND ND ND ND 11,000 ND ND 11,000 ND ND 4300 ND ND 4300 ND ND ND 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides	SC-SED-01	SC-SW-01	SC-SED-02	SC-SW-02
	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	ND	ND	ND	ND
gamma-BHC	ND ·	ND	ND	ND .
beta-BHC	ND	. ND	ND	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	NĎ
Aldrin	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	0.02
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND ·
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND	ND	ND	ND
Aroclor 1221	ND	ND "	ND	ND .
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect				

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-03	SC-SW-03	SC-SED-04	SC-SW-04
	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	ND	ND	ND	ND .
gamma-BHC	ND	ND	ND	ND
beta-BHC	ND	ND	ND	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	, ND
Aldrin	ND	· ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND
Dieldrin	ND .	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND .	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	, ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect				
				<u> </u>

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

/Kg			SC-SW-06
	ug/L	ug/Kg	ug/L
D	ND	ND	ND
D	ND	ND	ND
1	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
D .	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
ID	ND	ND	ND
ID	ND	ND	ND
ID	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
D	ND	ND	ND
ID	ND	ND	ND
D	ND	ND	ND
ID	ND	ND	ND
ID	ND	ND	ND
D	ND	ND	ND
/Kg	ug/L	ug/Kg	ug/L
ID	ND	ND	ND
ID	ND	ND	ND
ID	ND	ND	ND
ID	ND	ND	ND
ID	ND	. ND	ND
D	ND	ND	ND
ļ D	ND	ND	ND
V	ID VD	ID ND	ND ND

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-07	SC-SW-07	SC-SED-08	SC-SW-08
	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	. ND	ND	ND	ND
gamma-BHC	ND	ND	ND	ND
beta-BHC	ND	. ND	ND	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Aldrin	ND	. ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	6	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
<u> </u>	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect				

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-09	SC-SW-09	SC-SED-10	SC-SW-10
	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	ND	ND	ND	ND
gamma-BHC	ND	ND	ND	ND
beta-BHC	ND	. ND	ND	ND
delta-BHC	ND	ND	ND ·	ND
Heptachlor	ND	ND	ND	ND
Aldrin	ND	· ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	8	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND .	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND ·	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	· ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Arocior 1260	ND	ND	ND	ND
ND - Non detect				

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-30	SC-SW-30	SC-SED-11	SC-SW-11
CStloid COT CDC	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	ND	ND	ND	ND
gamma-BHC	ND	ND	ND	ND
peta-BHC	ND	ND	ND	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND ND	ND	ND	ND
gamma-Omordane alpha-Chlordane	ND	ND	ND	ND
aipna-Chiordane Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND
	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND ND	ND	ND	ND
4,4'DDD Endosulfan II	ND	ND	ND	ND*
	ND	ND	ND	ND
4,4'DDT	ND ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	NO NO			
PCBs		,	un IV a	ug/L
	ug/Kg	ug/L	ug/Kg . ND	ND
Aroclor 1016	ND	ND		ND ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND ND	ND
Aroclor 1254	ND	ND	ND ND	ND ND
Aroclor 1260	ND	ND	ND	IND
ND - Non detect				
SC-SED-30 is a duplicat	e of SC-SED-10 and	SC-SW-30 is a d	uplicate of SC-SW	-1U

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-12	SC-SW-12	SC-SED-13	SC-SW-13
	ug/Kg	ug/L	ug/Kg	ug/L
alpha-BHC	ND	ND	ND	, ND
gamma-BHC	ND	ND	ND	ND
beta-BHC	ND	· ND	73	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Aldrin	ND	· ND ·	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	30	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND	ND	ND ,	ND
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
1 0 0 0	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND ·	ND
Aroclor 1254	ND	ND	1900	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect			•	
				<u> </u>

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

ug/Kg ND ND ND ND ND ND ND ND ND 22	ug/L ND ND ND ND ND	ug/Kg ND ND ND ND	ug/L ND ND ND
ND ND ND ND ND ND 22	ND ND ND ND	ND ND ND	ND ND
ND ND ND ND 22	ND ND ND	ND ND	ND ·
ND ND ND 22	ND ND	ND	
ND ND 22	ND		4 15
ND 22		N.D.	ND
22	NID .	ND	ND
	ואט	ND	ND
	ND	ND	ND ND
ND	ND	ND	ND
ND	ND	ND .	ND
ND	ND	ND	ND
ND	ND	ND	ND
67	ND	64	ND
ND	ND	89	ND
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND	40	ND
ND	- ND	ND	ND .
ND	ND	ND	ND
ND	ND	ND	ND
ND			ND
ND	l		ND
ND	ND	ND ND	ND
ug/Kg	ug/L	ug/Kg	นg/L
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND	ND	ND ND
ND	ND	ND	ND
	1		1
	ND ND ND ug/Kg ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ug/Kg ug/L ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

SC-SED-16	SC-SW-16	SC-SED-17	SC-SW-17
ug/Kg			ug/L
			ND
ND			ND
ND			ND
ND			ND
ND			ND
ND	ND		ND
ND	ND		ND
ND			ND
ND			ND
			ND
			ND
	1		ND
ND	I		ND
ND			ND
ND	ND		ND
ND	ND	ND	ND
ND	ND	ND	ND
ND	ND		ND
ND	ND		ND
ND			ND
ND			ND
ND	ND	ND	ND
uall/a	1.0/1	ualKa	ug/L
			ND ND
	1		ND ND
1			ND ·
			ND ND
	1		ND
			ND ND
			ND ND
ND	טא	ND	- ND
	Ug/Kg ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/Kg ug/L ND ND ND	ug/Kg ug/L ug/Kg ND ND ND ND ND

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-18	SC-SW-18	SC-SED-31	SC-SW-31
	ug/Kg	ug/L	`ug/Kg	ug/L
alpha-BHC	ND	ND	ND	ND
DUO	. ND	ND	ND	ND
beta-BHC	15	ND	ND	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND	· ND	ND	ND
Endosulfan II	ND	ND	ND	ND.
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	ND	ND ·	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND ·
PCBs				
	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	51	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect				
SC-SED-31 is a duplicate	of SC-SED-18 and S	C-SW-31 is a du	uplicate of SC-SV	V-18

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-19	SC-SW-19	SC-SED-20	SC-SW-20
	ug/Kg	ug/L	ug/Kg	ug/L_
alpha-BHC	ND	ND	ND	ND
gamma-BHC	ND	ND	ND	ND
beta-BHC	ND	· ND	13	ND
delta-BHC	ND	ND	ND	ND
Heptachlor	ND ''	ND	ND	ND
Aldrin	ND	ND	ND :	ND
Heptachlor epoxide	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
4,4'DDD	ND .	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin ketone	37	ND	ND	ND
Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
PCBs				
1 ODS	ug/Kg	ug/L	ug/Kg	ug/L
Aroclor 1016	ND ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	710	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
ND - Non detect				

TABLE 3 - PESTICIDE AND PCB SAMPLE SUMMARY

Pesticides/PCBs	SC-SED-21	SC-SW-21	RB-01	
	ug/Kg	ug/L	ug/L	
alpha-BHC	ND	ND	ND	
gamma-BHC	ND	ND	ND	
beta-BHC	ND	. ND	ND.	
delta-BHC	ND	ND .	ND	
Heptachlor	ND	ND	ND	
Aldrin	ND	· ND	ND	
Heptachlor epoxide	ND	ND	ND	
gamma-Chlordane	ND	ND	ND	
alpha-Chlordane	ND	ND	ND	
Endosulfan I	ND	ND	ND	
4,4'DDE	28	ND	ND	
Dieldrin	ND	ND	ND	
Endrin	ND	ND	- ND	
4,4'DDD	ND	ND	ND	
Endosulfan II	ND	ND	ND	
4,4'DDT	ND	ND	ND	
Endrin aldehyde	ND	ND	ND	
Methoxychlor	ND	ND	ND	
Endosulfan sulfate	ND	ND	ND	
Endrin ketone	ND	ND	ND	
Chlordane	ND	ND	ND	
Toxaphene	ND	ND	ND	
PCBs		,,	7	
	ug/Kg	ug/L	ug/L	
Aroclor 1016	ND	ND	ND ND	
Aroclor 1221	ND	ND	ND ND	
Aroclor 1232	ND	ND	ND	
Aroclor 1242	ND	ND	ND	
Aroclor 1248	ND	ND	ND	
Aroclor 1254	ND	ND	ND	
Aroclor 1260	ND	ND	ND	
ND - Non detect				

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-01	SC-SED-02	SC-SED-03	SC-SED-04
	ng/kg	ng/kg	ng/kg	ng/kg
		Diluted sample		
2378-TCDD	39.8	96.1	89.8	7.86
2378-TCDF	55.9	· 93.7	101	13.8
12378-PeCDF	10.1	13	14.4	2.4
12378-PeCDD	6.31	8.02 X	9.58	0.848 X
23478-PeCDF	28.4	· 60.2	60	9.89 J
123478-HxCDF	236	525	548	99.7
123678-HxCDF	42	76.2	80	14.3
123478-HxCDD	4.68	4.62 X	8.71	1.07
123678-HxCDD	9.84	18.5	- 24.9	2.74
123789-HxCDD	8.27	13.9	15.3	1.8
234678-HxCDF	17.3	44.6	41.3	5.21 J
123789-HxCDF	ND	ND	ND	ND
1234678-HpCDF	881	1860	1600	318
1234678-HpCDD	102	218	244	23.6
1234789-HpCDF	24.3	62.1	52	10 J
OCDD	1430	2820	2700	257
OCDF	1060	2950	2670	487
			· · · · · · · · · · · · · · · · · · ·	
Total Dioxins				
Total TCDD	68.5	231	225	28.2
Total PeCDD	25.5	48.2	53.3	11.6
Total HxCDD	107	152	220	13.2
Total HpCDD	243	590	612	57
Total Furans				
Total TCDF	294	296	499	64.1
Total PeCDF	233	544	575	86.4
Total HxCDF	623	1030	1160	204
Total HpCDF	1030	2140	1980	357
X - The result is estimated be		yel, the GC/MS wa	s unable to give a	n exact
positive identification of the c	pmpound.			
J - The results were less that		entration of the co	npound in the rin	sate blank
and were therefore, estimate	ф.			
ND - Non detect				

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-05	SC-SED-06	SC-SED-07	SC-SED-08
	ng/kg	ng/kg	ng/kg	ng/kg
	Diluted	Diluted	Diluted	Diluted
2378-TCDD	14.6	6.33	4.99	ND
2378-TCDF	307	361	377	389
12378-PeCDF	104	76.8	95.3	116
12378-PeCDD	23.7	18.3	10.3 X	15.5 X
23478-PeCDF	647	460	557	641
123478-HxCDF	9850	4880	7650	9090
123678-HxCDF	1450	634	993	1080
123478-HxCDD	24.6	12.1	14.4	19.1
123678-HxCDD	49.8	41.3	48.3	55.5
123789-HxCDD	23.8	19.5 X	20	25.2
234678-HxCDF	605	291	505	613
123789-HxCDF	ND	ND	ND	ND
1234678-HpCDF	34,100	16,100	24,300	31,400
1234678-HpCDD	206	252	133	231
1234789-HpCDF	1000	486	737	859
OCDD	1630	2170	1380	2300
OCDF	65,300	24,300	38,100	47,900
Total Dioxins				
Total TCDD	153	167	182	244
Total PeCDD	156	161	74.9	193
Total HxCDD	178	260	160	385
Total HpCDD	413	498	286	487
Total Furans				1000
Total TCDF	1690	2570	2950	4060
Total PeCDF	5060	3990	5630	6140
Total HxCDF	18,000	9740	15,600	17,900
Total HpCDF	38,600	18,500	28,100	35,700
X - The result is estimate	ed because at a low le	evel, the GC/MS w	as unable to give	an exact
positive identification of t	he compound.			
ND - Non detect				

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-09	SC-SED-10	SC-SED-30	SC-SED-11
12	ng/kg	ng/kg	ng/kg	ng/kg
	Diluted	Diluted	Diluted	Diluted
2378-TCDD	5.1	6.95	ND	1.53
2378-TCDF	200	- 49.2	49.3	41.3
12378-PeCDF	84.8	16.5	15.4	18.9
12378-PeCDD	9.86	1.98	ND	1.93 X
23478-PeCDF	364	81.7	80.1	62.7
123478-HxCDF	4330	952	872	587
123678-HxCDF	604	130	127	102
123478-HxCDD	14.3	3.08	1.94	1.93
123678-HxCDD	39.6.	7.22	6.95	4.43
123789-HxCDD	20.3	2.42 X	2.97 X	4.79
234678-HxCDF	283	63.3	77.8	57.8
123789-HxCDF	ND	ND	ND	ND
1234678-HpCDF	13,400	3,330	2,820	1,900
1234678-HpCDD	799	46.1	52.3	47.2
1234789-HpCDF	378	84.3	77	50.4
OCDD	13,700	517	463	395
OCDF	21,000	5,680	4,070	2,910
Total Dioxins				
Total TCDD	117	11	15.7	23.9
Total PeCDD	100	10.3	ND	5.81
Total HxCDD	148	38	41.4	31.7
Total HpCDD	1650	109	127	101
Total Furans				
Total TCDF	1410	322	307	261
Total PeCDF	3190	733	711	480
Total HxCDF	8,810	2010	1,780	1,150
Total HpCDF	15,300	3,670	3,140	2,270
X - The result is estimated	d because at a low le	vel, the GC/MS wa	as unable to give a	n exact
positive identification of the ND - Non detect	e compound.			
	- of CCD10			
SCD30 is a blind duplicate	9 01 20010			
				1

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-12	SC-SED-13	SC-SED-14	SC-SED-15
	ng/kg	ng/kg	ng/kg	ng/kg
-	Diluted	Diluted	Diluted	Diluted
2378-TCDD	2.01	96.4	81	91.7
2378-TCDF	47.4	1140	1420	911
12378-PeCDF	26.9	397	525	334
12378-PeCDD	1.71 X	58.9	55.2	43.4
23478-PeCDF	108	1430	1430	1010
123478-HxCDF	1350	18,500	17,800	12,100
123678-HxCDF	206	2670	2670	1980
123478-HxCDD	3.28	70.1	57.3	46.2
123678-HxCDD	8.22	152	157	119
123789-HxCDD	5.05	58.3	98.9	72.2
234678-HxCDF	101	1260	859	748
123789-HxCDF	ND	ND	51.2	43.1
1234678-HpCDF	4,660	52,400	51,400	38,200
1234678-HpCDD	63.7	917	902	733
1234789-HpCDF	120	1540	1690	1050
OCDD	394	9550	9750	960
OCDF	6,170	74,500	79,700	66,600
				
Total Dioxins				
Total TCDD	26.8	669	677	535
Total PeCDD	11.8	576	525	450
Total HxCDD	37	1200	1270	757
Total HpCDD	144	2010	1890	1540
Total Furans				
Total TCDF	334	14,300	18,100	8320
Total PeCDF	1000	17,300	19,300	11,500
Total HxCDF	2,870	37,900	36,900	24,700
Total HpCDF	5,370	59,400	58,500	42,800
X - The result is estimate	ed because at a low le	evel, the GC/MS w	as unable to give	ah exact
positive identification of t	he compound.			
ND - Non detect				
THE HONGOOT				

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-16	SC-SED-17	SC-SED-18	SC-SED-31
	ng/kg	ng/kg	ng/kg	ng/kg
	Diluted	Diluted	Diluted	Diluted
2378-TCDD	- 50	8.83	6.12	3.27 X
2378-TCDF	668	. 153	72.6	77.2
12378-PeCDF	234	94.8	39.1	36.1
12378-PeCDD	58.9	15.8 X	6.96 X	10.1 X
23478-PeCDF	668	221	116	115
123478-HxCDF	5110	2,430	1,190	1,190
123678-HxCDF	947	392	191	177
123478-HxCDD	41.3	12	7.66	23.4
123678-HxCDD	110	28.5	16	22.3
123789-HxCDD	97.3	28.3	14 X	35.6 X
234678-HxCDF	537	188	80.5	89.2
123789-HxCDF	25.2	9.82	4.66	ND
1234678-HpCDF	20,200	9,510	4,360	3,660
1234678-HpCDD	976	201	139	159
1234789-HpCDF	548	246	104	113
OCDD	10,000	1810	1250	1270
OCDF	26,000	13,300	5,330	6,710
Total Dioxins				
Total TCDD	558	173	75.4	67.5
Total PeCDD	621	135	ND	66.3
Total HxCDD	952	207	95.6	227
Total HpCDD	2610	518	371	382
Total Furans				
Total TCDF	7680	1,330	783	587
Total PeCDF	8530	2,290	1,180	1,080
Total HxCDF	11,800	5,160	2,520	2,130
Total HpCDF	22,900	10,700	4,820	4,080
X - The result is estimated t	pecause at a low le	vel, the GC/MS wa	s unable to give a	h exact
positive identification of the	compound.			
ND - Non detect				<u> </u>
SCD31 is a blind duplicate	of SCD18			

TABLE 4 - CHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURAN SAMPLE SUMMARY

Dioxins and Furans	SC-SED-19	··SC-SED-20	SC-SED-21	RB01
	ng/kg	ng/kg	ng/kg	ng/kg
	Diluted	Diluted	Diluted	
2378-TCDD	85.1	ND	21.7	ND
2378-TCDF	594	15.2	414	ND
12378-PeCDF	186	7.43	154	1.91 X
12378-PeCDD	46.7	ND	31.9	ND
23478-PeCDF	582	16.1	517	3.11
123478-HxCDF	7240	178	6,700	1.25 X
123678-HxCDF	1340	31.1	1170	2.54
123478-HxCDD	43.5	4.59	29.8	ND
123678-HxCDD	107	5.06	72.4	2.92 X
123789-HxCDD	84	4.96	46.9	ND
234678-HxCDF	730	18.5	640	2.43
123789-HxCDF	18.3	ND	ND:	1.80 X
1234678-HpCDF	27,200	568	28,800	· 2.19 X
1234678-HpCDD	829	83.8	459	2.95 X
1234789-HpCDF	617	13.8 X	790	2.09 B
OCDD	9,550	1080	4470	10.9 X
OCDF	28,000	825	44,000	4.72 X
Total Dioxins	700	42.0	574	ND
Total TCDD	796	13.9	455	ND
Total PeCDD	508	18.1	647	ND
Total HxCDD	1020	65.3	994	ND
Total HpCDD	1600	425	994	IND
Total Furans		400	4.450	ND
Total TCDF	6170	138	4,150 5,330	3.11
Total PeCDF	8270	160		4.96
Total HxCDF	17,300	383	16,200	2.09
Total HpCDF	30,500	634	32,900	,2.09
X - The result is estimated l	pecause at a low le	vel, the GC/MS wa	s unable to give a	n exact
positive identification of the	compound.			
ND - Non detect				
B - Results were outside of	quality assurance	limits.		

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-01	SC-SW-01	SC-SED-02	SC-SW-02
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	8900	67,000	12,000	5500
Antimony	3.8	15	3.3	ND
Arsenic	20	· 73	12	ND
Barium	93	390	78	120
Beryllium	0.59	ND	0.77	ND
Cadmium	1.7	· 9.3	1.4	ND
Calcium	3400	200	6400	180
Chromium	570	3000	510	280
Cobalt	9.4	62	11	ND
Copper	100	460	99	ND
Iron	21,000	160,000	30,000	18,000
Lead	160	540	110	ND
Magnesium	5100	600	8300	250
Manganese	260	3300	430	920
Nickel	31	200	35	17
Mercury	1.7	8.8	0.44	ND
Potassium	1600	180	2300	100
Selenium	0.77	· ND	ND	ND
Silver	1.3	8.1	1.8	ND
Sodium	4300	5000	10,000	2100
Thallium	ND	ND	ND	ND
Vanadium	36	250	38	ND
Zinc	210	1100	210	ND
Total Organic Carbon	39,000	N/A	53,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-03	SC-SW-03	SC-SED-04	SC-SW-04
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	11,000	10,000	12,000	1200
Antimony	2.7	ND	20	ND
Arsenic	12	. ND	21	ND ·
Barium	77	150	58	- 58
Beryllium ·	0.73	ND	ND	ND
Cadmium	1.1	· ND	0.65	ND
Calcium	5800	190	29,000	160
Chromium	410	390	3800	24
Cobalt	11	8.7	71	ND
Copper	89	31	17	ND
Iron	29,000	29,000	52,000	2400
Lead	97	29	48	ND
Magnesium	7800	270	21,000	490
Manganese	440	1100	740	310
Nickel	34	24	260	5.7
Mercury	0.59	0.49	0.25	0.066
Potassium	2100	100	470	150
Selenium	0.74	ND	ND	ND .
Silver	1.7	ND	ND	ND
Sodium	8200	2300	3700	4000
Thallium	ND	ND	ND	ND
Vanadium	36	22	720	ND
Zinc	190	86	210	ND
Total Organic Carbon	39,000	N/A	5500	N/A
ND - Non detect			·	

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-05	SC-SW-05	SC-SED-06	SC-SW-06
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	4700	8,400	1000	760
Antimony	4.4	ND	4.2	ND
Arsenic	9.3	ND	4.4	ND
Barium	190	260	160	620
Beryllium	ND	ND	ND	ND
Cadmium	0.83	· ND	ND	ND .
Calcium	210,000	290	280,000	810
Chromium	790	1300	740	1900
Cobalt	4.9	11	2.9	ND
Copper	26	21	9.3	11
Iron	42,000	39,000	2,400	980
Lead	38	65	59	25
Magnesium	18,000	500	20,000	12
Manganese	1300	1300	180	60
Nickel	17	39	30	14
Mercury	0.46	0.31	0.51	0.62
Potassium	990	150	ND	8.2
Selenium	ND	ND	ND	ND
Silver	ND	ND	ND	ND
Sodium	13,000	3900	860	110
Thallium	ND	ND	ND	ND
Vanadium	37	74	30	33
Zinc	92	220	56	40
Total Organic Carbon	29,000	N/A	15,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-07	SC-SW-07	SC-SED-08	SC-SW-08
1010111101010	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	11,000	ND	4,100	ND
Antimony	4.6	ND	9.5	ND
Arsenic	2.7	ND	6.2	ND
Barium	62	98	210	69
Beryllium	ND	ND	ND	ND
Cadmium	0.46	- ND	0.43	ND
Calcium	59,000	92	240,000	50
Chromium	790	1400	1600	1100
Cobalt	26	ND	22	ND
Copper	130	ND	73	ND
Iron	23,000	240	14,000	200
Lead	26	ND	200	26
Magnesium	13,000	11	10,000	6
Manganese	240	11	370	13
Nickel	650	8.2	310	8.6
Mercury	5.1	0.086	4.3	0.49
Potassium	520	16	210	13
Selenium	ND	ND	ND	ND
Silver	ND	ND	ND	ND
Sodium	1700	220	1400	180
Thallium	ND	ND	ND	ND
Vanadium	100	120	150	81
Zinc	160	ND	140	9.6
Total Organic Carbon	25,000	N/A	27,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	ISC-SED-09	SC-SW-09	SC-SED-10	SC-SW-10
· ·	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	5300	ND	19,000	ND
Antimony	11	ND	57	ND .
Arsenic	2.5	ND	2.4	ND
Barium	260	160	110	46
Beryllium	ND	ND	ND	ND
Cadmium	ND	· ND	0.47	ND
	220,000	89	210,000	35
Calcium	2000	710	11,000	230
Chromium	32	ND	64	ND
Cobalt	74	ND	12	ND
Copper	22,000	580	35,000	870
Iron	540	200	110	80
Lead	25,000	6.4	40,000	8.3
Magnesium	600	42	570	81
Manganese	170	7	360	5.1
Nickel	24	8.3	0.22	ND
Mercury	300	6.3	ND	6.1
Potassium	ND	ND ND	ND	ND
Selenium		ND	ND	ND
Silver	ND 740	57	560	51
Sodium	740	ND ND	ND	ND
Thallium	ND 240	ND ND	280	ND
Vanadium	310	ND ND	110	8.6
Zinc	120	N/A	11,000	N/A
Total Organic Carbon	18,000	IN/A	11,000	1477
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-30	SC-SW-30	SC-SED-11	SC-SW-11
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	2,700	ND	1,500	410
Antimony	11	ND	8.6	ND
Arsenic	2.9	. ND	1.6	ND
Barium	360	36	300	140
Beryllium	ND	. ND	ND	ND
Cadmium	2	ND	ND	ND
Calcium	260,000	26	310,000	150
Chromium	1,500	200	1400	450
Cobalt	4.4	ND	3.9	ND
Copper	35	ND	16	ND
Iron	12,000	680	5,400	2,200
Lead	3300	61	880	330
Magnesium	7,200	8.1	12,000	11
Manganese	1400	58	780	220
Nickel	14	ND	24	7
Mercury	0.26	ND	0.14	ND
Potassium	170	6	110	6.2
Selenium	ND	ND	ND	ND
Silver	ND	ND	ND	ND
Sodium	1200	50	.1600	50
Thallium	ND	ND	ND	ND
Vanadium	39	ND	21	10
Zinc	960	ND	71	40
Total Organic Carbon	15,000	N/A	14,000	N/A
ND - Non detect				
SC-SEC-30 is a duplicate	of SC-SED-10 an	d SC-SW-30 is a	duplicate of SC-SV	W-10

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-12	SC-SW-12	SC-SED-13	SC-SW-13
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	1,600	1500	12,000	250
Antimony	8.9	17	38	ND
Arsenic	1.1	. ND	17	ND
Barium	180	250	15	50
Beryllium	ND	ND	0.6	ND
Cadmium	ND	ND	5	ND
Calcium	63,000	390	53,000	31
Chromium	1500	3300	5300	250
Cobalt	1.7	ND	19	ND
Copper	11	ND	170	ND
Iron	4,100	1200	57,000	1,700
Lead	430	210	10,000	420
Magnesium	15,000	7.1	6,000	12
Manganese	660	. 200	520	72
Nickel	7.2	ND	99	7.3
Mercury	0.088	ND	0.016	0.11
Potassium	ND	4.3	750	6.9
Selenium	ND	ND	1.8	ND
Silver	ND	ND	1.5	ND ·
Sodium	1000	69	1,500	53
Thallium	ND	ND	2.4	ND
Vanadium	15	ND	200	12
Zinc	71	22	1500	29
Total Organic Carbon	12,000	N/A	130,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-14	SC-SW-14	SC-SED-15	SC-SW-15
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	12,000	ND	12,000	330
Antimony	37	ND	45	ND
Arsenic	20	ND	18	ND
Barium	18	18	35	68
Beryllium	0.72	ND	0.61	ND
Cadmium	4.5	· ND	4.5	ND
Calcium	14,000	21	20,000	25
Chromium	5,100	150	7400	240
Cobalt	18	ND	17	ND
Copper	250	ND	250	10
Iron	81,000	880	65,000	3,000
Lead	3700	76	5200	240
Magnesium	3,800	10	4,700	11
Manganese	590	56	450	110
Nickel	91	ND	81	6.3
Mercury	0.022	ND	0.091	0.056
Potassium	1100	6.5	1200	6.7
Selenium	2.3	ND	2.2	ND
Silver	2.2	ND	2.7	ND
Sodium	960	47	990	46
Thallium	2.2	ND	2.4	ND
Vanadium	200	ND	240	14
Zinc	900	ND -	830	29
Total Organic Carbon	120,000	N/A	170,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

SC-SED-16 mg/Kg	SC-SW-16 ug/L	mg/Kg	1 00/1
			ug/L
15.000	2500	2,800	ND
	59	18	ND
	ND	4.7	ND
	550	130	83
		ND	ND
		2.2	ND
		260,000	34
		1900	270
		8	ND
1		54	ND
		24,000	1,100
			380
			17
	1		57
			10
			ND
1			8
			ND
			ND
1			69
			ND
			ND
			59
			N/A
120,000	N/A	28,000	INA
	13,000 170 24 13 0.76 5.5 14,000 3800 15 320 62,000 30,000 3,400 420 76 0.023 840 2.3 2.2 850 3.2 210 1600 120,000	170 59 24 ND 13 550 0.76 ND 5.5 ND 14,000 63 3800 810 15 ND 320 56 62,000 29,000 30,000 12,000 3,400 14 420 540 76 20 0.023 0.2 840 8.9 2.3 ND 2.2 ND 850 44 3.2 ND 210 56 1600 400	170 59 18 24 ND 4.7 13 550 130 0.76 ND ND 5.5 ND 2.2 14,000 63 260,000 3800 810 1900 15 ND 8 320 56 54 62,000 29,000 24,000 30,000 12,000 4,400 3,400 14 7,200 420 540 1900 76 20 29 0.023 0.2 0.21 840 8.9 240 2.3 ND ND 850 44 1,500 3.2 ND ND 210 56 76 1600 400 1200

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-18	SC-SW-18	SC-SED-31	SC-SW-31
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	2,500	ND	20,000 .	ND
Antimony	12	ND	65	ND .
Arsenic	3.2	- ND	3.4	ND
Barium	380	70	130	71
Beryllium	ND	ND	·- ND	ND
Cadmium	1.3	ND	0.78	ND
Calcium	280,000	35	240,000	35
Chromium	1,600	260	13,000	270
Cobalt	4.4	ND	64	ND
Copper	34	ND	15	ND
Iron	12,000	430	35,000	450
Lead	3600	140	150	150
Magnesium	7,400	18	38,000	18
Manganese	1500	45	620	46
Nickel	14	10	380	10
Мегсигу	0.21	ND	0.21	ND
Potassium	180	8.3	ND	8.3
Selenium	ND	ND	ND	ND
Silver	ND	ND	ND	ND
Sodium	1300	70	650	71
Thallium	ND	ND	ND	ND
Vanadium	41	ND	260	ND
Zinc	870	13	120	18
Total Organic Carbon	16,000	N/A	11,000	N/A
ND - Non detect				
SC-SED-31 is a duplicate	of SC-SED-18 and	SC-SW-31 is a	uplicate of SC-SV	V- 18

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-19	SC-SW-19	SC-SED-20	SC-SW-20
	mg/Kg	ug/L	mg/Kg	ug/L
Aluminum	19,000	ND	8,300	690
Antimony	55	ND	· 18	ND
Arsenic	24	ND	3	ND
Barium ,	63	70	200	91
Beryllium	0.68	ND	ND	ND
Cadmium	3.3	ND	0.79	ND
Calcium	7,500	46	260,000	110
Chromium	5100	250	3700	720
Cobalt	22	ND	3.3	ND
Copper	210	ND	25	ND
Iron	77,000	1,400	30,000	4,600
Lead	13,000	310	330	ND
Magnesium	4,600	· 22	9,500	26
Manganese	220	120	930	280
Nickel	100	11	11	9.4
Mercury	0.028	ND	0.067.	ND
Potassium	780	9	270	12
Selenium	1.1	ND	ND	ND
Silver	1.4	ND	ND	ND
Sodium	350	69	2300	97
Thallium	ND	ND	ND	ND
Vanadium	320	ND	86	21
Zinc	1000	13	100	ND
Total Organic Carbon	100,000	N/A	14,000	N/A
ND - Non detect				

TABLE 5 - TOTAL METAL AND TOTAL ORGANIC CARBON SAMPLE SUMMARY

Total Metals	SC-SED-21	SC-SW-21	RB-01	
	mg/Kg	ug/L	ug/L	
Aluminum	11,000	1,900	ND	
Antimony	68	16	ND	
Arsenic	25	_ 16	ND	
Barium	320	200	ND	
Beryllium	0.55	ND	ND	
Cadmium .	2.6	ND	ND	
Calcium	6,800	92	ND	
Chromium	2100	350	ND	
Cobalt	8.9	ND	ND	
Copper	320	48	ND	
Iron	42,000	31,000	ND	
Lead	3,500	490	ND	
Magnesium	4,800	15	ND	
Manganese	120	380	ND	
Nickel	37	9.9	ND	
Мегсигу	0.47	0.16	ND	
Potassium	820	9.5	ND	
Selenium	2.4	ND	ND	
Silver	0.9	ND	ND	
Sodium	570	28	ND	
Thallium	ND	ND .	ND	
Vanadium	140	30	ND	
Zinc	570	150	ND	
Total Organic Carbon	160,000	N/A	ND .	
ND - Non detect				

E.7 Transformer Area Data

1990-1993 Remedial Investigation

1990-1993 Remedial Investigation Excerpt from RI Report

Free phase product was observed in sample SB-2 (B) from the sand just above the clay, and in the groundwater sample from MW-15L. Based on these results, it appears that the soils (and free phase product) in the vicinity of Building 2 are a continuing source of contamination to the groundwater. The source of the contamination appears to be from the handling of materials shipped to and from the site.

5.3.2 Transformer Area Sediment

One sediment sample (S-3) was collected from the surface of a concrete pad in a former transformer area (Figure 5-1) and analyzed for PCBs. Elevated PCB Aroclor-1260 (5,160 mg/kg) were detected in the sediment. This sample was analyzed only for PCBs, therefore it is not known whether interference effects produced by the presence of high concentrations of chlorobenzenes affect the reliability of the PCBs results (see Subsection 5.1).

5.4 MIGRATION PATHWAYS

The RI addressed two potential migration pathways for chemical releases from the site: surface water drainage and groundwater.

5.4.1 Surface Drainage

5.4.1.1 Description of Site Drainage

Surface water drains from the site along two paths which lead respectively to outfalls to the Hackensack River at the northeastern and southeastern corners of the property. The northeast outfall receives drainage from the northwestern corner of the property. Runoff collects in a depression which drains through a culvert into a buried storm drain which runs along the entire northern border of the SCCC property. The storm drain also receives runoff from the Belleville Turnpike. The outfall is totally submerged at high

1997-1999 Supplemental Remedial Investigation

TABLE 3-1

SOIL ANALYTICAL RESULTS FOR PCB's STANDARD CHLORINE CHEMICAL COMPANY

Non-Residential Re Soil Cleanup So		New Jersey SITE; [all Residential DESCRIPTION: Soit Cleanup DATE; Criteria DEPTH (ft):		TA-CC01 CONCRETE CHIP 10/9/98 0" - 1"		TA-SS01 SURFACE SOIL 10/9/98 0" - 6"		TA-8502 SURFACE SOIL 10/9/98 0" - 6"		TA-9503 SURFACE SOIL 10/9/98 0" - 5"	
(Units in mg/kg)		ANALYTICAL METHOD:	8081	8082	8081	8082	8081	8082	8081	8082	
				< 340	< 28	< 0.034	< 0 055	< 0.034	< 0.055	< 0.036	< 0.055
PCB-1016	Į	· ·	1.	< 340	< 6	< 0.034	< 0.011	< 0.034	< 0.011	< 0.038	< 0.011
PCB-1221				< 340	< 28	< 0 034	< 0.055	< 0 034	< 0.055	< 0.036	< 0.055
PCB-1232				< 340	< 28	< 0.034	< 0.055.	< 0.034	< 0.055	< 0.038	< 0 055
PC8-1242	· L	ľ		< 340	< 31	< 0.034	< 0.061	< 0.034	< 0.061	< 0.038	< 0.061
PCB-1248				< 340	< 22	< 0.034	< 0.044	< 0.034	< 0.044	< 0.036	< 0.044
PCB-1254				6800	9300	0.15	0.12	0.16	0.29	0.022 J	< 0.076
PCB-1260 PCB's (Total)	2	0.49		[6800]	[9300]	0.15	0.12	0.16	0.29	0.022 J	ND

^{[] -} Indicates sample concentration greater than New Jersey Non-Residential Soil Cleanup Criteria.

J - Estimated concentration less than the method detection limit.